Supplementary material to article by M. Pigg et al. "Spectrum of Autosomal Recessive Congenital Ichthyosis in Scandinavia: Clinical Characteristics and Novel and Recurrent Mutations in 132 Patients"

Table SI. Compilation of genotypic and phenotypic data from 112 cases of autosomal recessive congenital ichthyosis (ARCI) in which disease-causing mutations were found^a. An asterisk (*) after the patient number indicates subjects who belong to the same family Some data are from previous publications (Ref.). For abbreviations see bottom of the Table

Pat. no.	Diagnosis	Mutations	Consequences of mutations	IS	ES	Со	Ect	Anh	PPK	Ref.
		TGM1 (HGVS: NM_000359.2)								
1*	LI	c.1074C>G/c.1135G>C	p.Ser358Arg/p.Val379Leu	1.9	0.9	Yes	Yes	Yes	Yes	
2*	LI	c.1074C>G/c.1135G>C	p.Ser358Arg/p.Val379Leu	1.8	1	Yes	Yes	Yes	Yes	
3	LI	c.1074C>G/c.1074C>G	p.Ser358Arg/p.Ser358Arg	2.6	0.1	Yes	Yes	Yes	Yes	
4	LI	c.877-2A>G/c.1094A>G	splice site (in 5)/p.Tyr365Cys	0.8	0.3	Yes	No	Yes	Yes	
5	LI	c.877-2A>G/c.1074C>G	splice site (in 5)/p.Ser358Arg	3	0.2	Yes	Yes	Yes	Yes	
6	SICI	c.944G>A/c.944G>A	p.Arg315His/p.Arg315His	0.7	0.4	Yes	No	Yes	No	
7	LI	c.877-2A>G/c.877-2A>G	splice site (in 5)/splice site (in 5)	3.3	1.8	Yes	Yes	Yes	Yes	
8	CIE	c.788G>A/c.2150T>G	p.Trp263Term/p.Leu717Arg	0.2	2.5	(Y)	No	?	Yes	
9	LI	c.877-2A>G/c.1121A>G	splice site (in 5)/p.Tyr374Cys	2.5	0.1	Yes	Yes	Yes	Yes	
10*	LI	c.877-2A>G/c.1187G>T	splice site (in 5)/p.Arg396Leu	1.2	0.2	Yes	Yes	(Y)	Yes	
11*	LI	c.877-2A>G/c.1187G>T	splice site (in 5)/p.Arg396Leu	1.1	0.5	Yes	Yes	(Y)	Yes	
12	LI	c.877-2A>G/c.877-2A>G	splice site (in 5)/splice site (in 5)	2.1	0	Yes	Yes	(Y)	Yes	
13	SICI	c.918C>G/c.1187G>T	p.Asp306Glu/p.Arg396Leu	0.4	0	Yes	No	No	(Y)	
14*	LI	c.1074C>G/c.1163T>C	p.Ser358Arg/p.Leu388Pro	2.4	1	Yes	Yes	Yes	Yes	
15*	LI	c.872G>A/c.1074C>G	p.Gly291Asp/p.Ser358Arg	1.1	0.5	Yes	Yes	(Y)	(Y)	
16	LI	c.877-2A>G/c.877-2A>G	splice site (in 5)/splice site (in 5)	2.7	0	Yes	No	Yes	Yes	
17	LI	c.877-2A>G/c.877-2A>G	splice site (in 5)/splice site (in 5)	3.6	1.3	Yes	No	Yes	Yes	
18*	LI	c.1074C>G/c.1187G>T	p.Ser358Arg/p.Arg396Leu	2.7	0.7	Yes	Yes	Yes	Yes	
19*	LI	c.1074C>G/c.1187G>T	p.Ser358Arg/p.Arg396Leu	3	0.7	Yes	Yes	Yes	Yes	
20	LI	c.1074C>G/c.1074C>G	p.Ser358Arg/p.Ser358Arg	1.7	0.2	(Y)	Yes	Yes	Yes	
21	LI	c.1074C>G/c.1074C>G	p.Ser358Arg/p.Ser358Arg	2	0	Yes	Yes	Yes	Yes	
22	LI	c.1074C>G/c.1438A>T	p.Ser358Arg/p.Ile480Phe	1.5	0.8	Yes	No	(Y)	No	
23	LI	c.877-2A>G/c.1074C>G	splice site (in 5)/p.Ser358Arg	3.9	0.6	(Y)	Yes	Yes	Yes	
24*	LI	c.1074C>G/c.2088+1G>T	p.Ser358Arg/splice site (in 13)	2.6	0.1	Yes	Yes	Yes	Yes	28
25*	LI	c.1074C>G/c.2088+1G>T	p.Ser358Arg/splice site (in 13)	3	0.7	Yes	Yes	Yes	Yes	28
26*	LI	c.1074C>G/c.1135G>C	p.Ser358Arg/p.Val379Leu	1.8	0.7	Yes	Yes	Yes	Yes	28
27	LI	c.10/4C>G/c.1094A>G	p.Ser358Arg/p.Tyr365Cys	2.6	0.9	Yes	No	?	Yes	
28	LI	c.160C>T/c.1927+1G>A	p.Arg54Term/splice site (in 12)	3.1	1.1	Yes	No	Yes	Yes	
29	CIE	c.10/4C>G/c.8//-2A>G	p.Ser358Arg/splice site (in 5)	2.1	1.7	Yes	No	Yes	Yes	
30	LI	c.427C>T/c.1135G>C	p.Arg143Cys/p.Val379Leu	3.7	1.3	Yes	Yes	Yes	Yes	
31	LI	c.401A>G/c.566dupG	p.Tyr134Cys/p.Ser190fs	3.9	0.1	Yes	Yes	Yes	Yes	
32		c.10/4C>G/c.10/4C>G	p.Ser358Arg/p.Ser358Arg	4	1	Yes	Yes	Yes	Yes	
33	LI	c.1135G>C/1166G>A	p. Val3/9Leu/p.Arg389His	3	0.5	Yes	Yes	Yes	Yes	
34* 25*		c.425G>A/c.1389A>1	p.Arg142His/p.Gin463His	1./	0	NO	NO	NO	Yes	
35* 20		c.425G>A/c.1389A>1	p.Arg142His/p.Gin463His	1.1	0.5	(Y) V	NO	Yes	Yes	
30 27		C.42/C>1/C.42/C>1	p.Arg143Cys/p.Arg143Cys	3.5	1	Yes	res	? V	res	
3/ 20	CIE	c./90C > 1/c.10/4C > G	p.Arg2041rp/p.Ser358Arg	1./	1.8	Yes	No No	Yes	(Y)	
20		0.1074A-0/0.1436A-1	p. Ty1505Cys/p.11e480File	2.1	0.8	Vac	No	Vac	No	
39 40	LI LI/DI	0.42/C>1/C.8//-2A>G	p.Arg207Gly/p.Sor258Arg	0.4	0.8	(V)	No	Vac	Vac	
40		c.919C>0/c.10/4C>0	splice site (in 5)/p Arg380Pro	2.8	0.5	(1) Vec	Vec	Vec	Vec	
42*	LI	c.877-2A>G/c.1166G>C	splice site $(in 5)/p$.Arg380Pro	2.0	0.5	(\mathbf{V})	(V)	Vec	Vec	
42	SICI	c 1094A>G/c 1094A>G	n Tyr365Cyc/n Tyr365Cyc	2.0	0.0	Vec	(T) (V)	2	2	
43	LI	c 877-24>G/c 1135G>C	splice site (in 5)/n Val379I eu	2.9	1.9	Ves	Ves	Ves	Ves	
15	LI	c 1135G>C/c 1403 2 2225+2[2]	n Val370L eu/nihila	3.1	0.4	Vec	Vec	Vec	Vec	
46		$c.1155G>C/c.1405-:_2225+:[2]$	p. Val379Ecu/ninii p. Arg142His/p. Arg142His	3.8	1	Ves	Ves	Ves	Ves	
40		$c_{1094} \Delta > G/c 877-2 \Delta > G$	n Tyr 365 Cys/splice site (in 5)	1.5	0	Ves	No	(V)	Ves	
48	SICI	c 877-2A>G/919C>G	splice site (in 5)/n Arg307Gly	0.5	Ő	Yes	(\mathbf{X})	No	No	24
49	LI	c 401A>G/c 877-2A>G	n Tvr134Cvs/splice site (in 5)	2.6	0.1	Yes	No	Yes	Yes	2.
50*	LI	c 1187G > A/c 1686 1695 delCCACGGCAGC	n Arg396His/n His563fs	3.8	19	Yes	Yes	Yes	Yes	
51*	LI	c 1187G>A/c 1686_1695delCCACGGCAGC	p Arg396His/p His563fs	4	1.1	Yes	Yes	Yes	Yes	
52	LI	c 428G>A/c 428G>A	p Arg143His/p Arg143His	3.4	1.1	Yes	Yes	Yes	Yes	
53	LI	c 428G>A/c 428G>A	n Arg143His/n Arg143His	4	1	Yes	Yes	Yes	Yes	
54*	LI	c.877-2A/c.877-2A	splice site (in 5)/splice site (in 5)	2.9	1.9	Yes	No	Yes	Yes	
55*	LI	c.877-2A/c.877-2A	splice site (in 5)/splice site (in 5)	2.2	1	Yes	No	Yes	Yes	
56	LI	c.877-2A/c.1226 1227delCA	splice site (in 5)/p.Thr409fs	2.6	1.3	Yes	Yes	Yes	(Y)	
		NIPAL4 (HGVS: NM 001099287.1)							. ,	
57	LI	c.527C>A/c.889G>A	p.Ala176Asp/p.Gly297Arg	2.1	0.3	?	Yes	Yes	Yes	
58	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.8	0	(Y)	No	Yes	No	31
59	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.9	0.1	No	Yes	Yes	Yes	
60	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.7	0.3	Yes	No	Yes	Yes	
61*	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.8	0.7	No	Yes	Yes	No	31
62*	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.8	0.9	No	No	Yes	No	31
63	CIFS	c.527C>A/c.772+1G>A	p.Ala176Asp/splice site (in 5)	1.6	0	No	No	No	Yes	31
64	CIE	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.2	1.2	No	No	Yes	Yes	
65	CIFS	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	1.4	0	?	?	Yes	No	
66	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.9	1.1	?	Yes	Yes	No	
67	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.6	1	No	No	Yes	No	
68	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.8	0.4	No	No	Yes	Yes	

Supplementary material to article by M. Pigg et al. "Spectrum of Autosomal Recessive Congenital Ichthyosis in Scandinavia: Clinical Characteristics and Novel and Recurrent Mutations in 132 Patients"

Table SI contd.

Pat. no.	Diagnosis	Mutations	Consequences of mutations	IS	ES	Со	Ect	Anh	PPK	Ref.
69	CIE	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.3	1.6	No	No	Yes	No	
70	LI	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	3	0.1	No	No	Yes	No	
71	CIE	c.527C>A/c.527C>A	p.Ala176Asp/p.Ala176Asp	2.4	2	?	Yes	Yes	Yes	
		ALOX12B (HGVS: NM 001139.2)								
72	SICI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	0.9	0.4	Yes	No	Yes	Yes	
73	CIFS	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1.5	0.9	?	No	(Y)	(Y)	
74	SICI	c.1385G>A/c.1385G>A	p.Gly462Asp/p.Gly462Asp	1.5	0.1	Yes	No	Yes	Yes	24
75	SICI	c.199A>T/c.1562A>G	p.Ile67Phe/p.Tyr521Cys	1.2	0.4	Yes	No	Yes	Yes	24
76*	LI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1.9	0.4	Yes	No	Yes	Yes	
77*	LI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1.9	0.5	Yes	No	Yes	Yes	
78	SICI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1	0.1	Yes	No	Yes	No	24
79	CIE	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1.3	1.2	Yes	No	Yes	Yes	
80	SICI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1	0.1	Yes	No	Yes	Yes	24
81	SICI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	1.2	1.7	Yes	No	Yes	(No)	24
82	SICI	c.1654+3A>G/c.1654+3A>G	splice site (in 12)/splice site (in 12)	2.9	1.1	Yes	No	Yes	Yes	24
83	CIE	c.1654+3A>G/c.1654+3A>G	splice site (in 12)/splice site (in 12)	1.4	0.8	Yes	No	Yes	Yes	
84	SICI	c.1579G>A/c.1790C>A	p.Val527Met/p.Ala597Glu	1	0.3	Yes	No	No	(Y)	24
85	LI	c.1265C>T/c.1562A>G	p.Pro422Leu/p.Tyr521Cys	1.6	0	Yes	No	(Y)	Yes	15
86	SICI	c.1562A>G/c.1562A>G	p.Tyr521Cys/p.Tyr521Cys	0.3	0	Yes	No	?	No	24
		ALOXE3 (HGVS: NM 021628.2)								
87	CIFS	c.353-1G>C/c.353-1G>C	splice site (in 3)/splice site (in 3)	1.4	0.4	No	No	(Y)	Yes	
88*	CIFS	c.631C>T/c.1889C>T	p.Arg211Term/p.Pro630Leu	1	0	No	No	Yes	No	15
89*	CIFS	c.631C>T/c.1889C>T	p.Arg211Term/p.Pro630Leu	1	1	No	No	Yes	No	15
90	SICI	c.1280T>C/c.1280T>C	p.Leu427Pro/p.Leu427Pro	1	0.1	Yes	No	Yes	No	24
91	SICI	c.700C>T/c.1889C>T	p.Arg234Term/p.Pro630Leu	0.7	0.1	Yes	No	Yes	No	24
92	SICI	c.1305+1 1305+2delGTinsTA /homozygous	splice site (in 10)/splice site (in 10)	2.2	0.1	Yes	No	Yes	Yes	15
93	LI	c.1889C>T/c.1889C>T	p.Pro630Leu/p.Pro630Leu	2.4	1	No	No	Yes	No	
94	SICI	c.327C>A/c.1889C>T	p.Cys109Term/p.Pro630Leu	1.4	0.1	?	No	No	No	24
95	CIFS	c.327C>A/c.1889C>T	p.Cys109Term/Pro630Leu	0.9	1	No	No	Yes	(Y)	
		ABCA12 (HGVS: NM 173076.2)	1 5						()	
96	CIE	c.4139A>G/c.4554G>A	p.Asn1380Ser/p.Trp1518Term	2.5	1.4	(Y)	Yes	(Y)	Yes	
97	HI-like	c.4896delG/c.4541G>A	p.Ser1633fs/p.Arg1514His	3.5	1.9	Yes	Yes	Yes	Yes	
98	HI-like	c.7137delG/c.7412G>A	p.Met2380fs/p.Glv2471Glu	2.9	3.9	Yes	Yes	Yes	Yes	
99	HI	c.3270T>G/c.3673C>T	p.Tyr1090Term/p.Arg1225Term	4	4	Yes	Yes	Yes	Yes	32
100	HI	c.3265G>T/c.5128+3A>G	p.Val1089Phe/splice site (in 33)	3.5	3.5	Yes	Yes	Yes	Yes	33
101	HI	c.3829+1G>A/c.3829+1G>A	splice site (in 26)/splice site (in 26)	4	3.5	Yes	Yes	Yes	Yes	33
102	HI-like	c.596G>A/1782G>A	p.Trp199Term/p.Glu594Glu	3.9	3	Yes	Yes	Yes	Yes	
103	CIE	c.1002 1004delAACinsT/c.6263T>C	p.Thr335fs/p.Leu2088Pro	1	0.7	?	No	No	No	
		SLC27A4 (HGVS: NM 005094.3)	1 1							
104	IPS	c.504C>A/c.504C>A	p.Cys168Term/p.Cys168Term	1.3	0	(Y)	No	?	No	25
105	IPS	c.504C>A/c.504C>A	p.Cys168Term/p.Cys168Term	0.2	0.1	(Y)	No	No	No	25
106	IPS	c.504C>A/c.988-2A>G	p.Cvs168Term/splice site (in 7)	0.1	0.2	?	No	No	No	25
107*	IPS	c 504C>A/c 1511G>A	p Cvs168Term/p Arg504His	1.1	0	Yes	No	No	No	34
108*	IPS	c.504C>A/c.1511G>A	p.Cys168Term/p.Arg504His	2	0.4	(Y)	No	No	No	34
		CYP4F22 (HGVS: NM 173483.3)	1 9 1 0			()				
109	LI	c.59dupG/c.727C>T	p.Ile21fs/p.Arg243Cvs	1	1.5	Yes	No	Yes	No	
110	CIE	c.727C>T/c.727C>T	p.Arg243Cys/p.Arg243Cys	1.5	1.9	?	No	Yes	No	
111	LI	c.667C>T/c.667C>T	p.Gln223Term/p.Gln223Term	2.1	0.3	?	No	(Y)	Yes	
		PNPLA1 (HGVS: NM 001145717.1)	1 · · · · · · · · · · · · · · · · · · ·			-		(-)		
112	LI	c.775+3A>T/c.775+3A>T	splice site (in 5)/splice site (in 5)	1.8	0.9	?	Yes	Yes	Yes	

^aDiscussion of the mutation findings: TGM1: 29 different mutations were revealed in 111 alleles. The splice site mutation c.877-2A>G was identified in 24% of TGM1 alleles and was found in 21 Swedish and 6 Danish alleles. The p.Ser358Arg substitution was found in 22% of TGM1 alleles and only in Swedish patients, the other mutations found were less frequent. Most of the mutations have been previously described (4, 5, 28, 35-42), but 8 novel mutations were identified (see Table II). We also found 2 additional sequence variants, resulting in the amino acid substitutions p.Val518Met and p.Glu520Gly, which are indicated as disease-causing in HGMD. However, they were shown to be benign variants by segregation analyses in the families investigated (data not shown). Patient 45 initially revealed only one mutation, but a complementary analysis later disclosed an exon 10-14 duplication which implicates TGM1 as culprit. A younger sister with LI has the identical genotype, whereas the mother carries the point mutation (V379L) and the father has a gene duplication. NIPAL4: In total, 15 patients with NIPAL4 mutations were found in the Scandinavian population when combining data from this study with those of a previous study (31). The previously described missense mutation c.527C>A, p.Ala176Asp (9) was the most common one in the Swedish population. It was found on 16 out of 18 (93%) Swedish alleles, and it was the only mutation found in the Danish population. Also, 2 other previously described NIPAL4 mutations (9, 31) were found in a heterozygous state in 2 Swedish patients. ALOX12B: The missense mutation c. 1562A>G, p.Tyr521Cys (43) was found to be the most common one. Together with the patients previously reported by us (24), this mutation was found on 20 out of 30 (67%) alleles in our cohort. The other mutations were also previously reported (24, 43-45). ALOXE3: Mutations were found in a total of 18 alleles. Most of these were previously described (8, 24, 43), but one novel mutation was identified (see Table II). ABCA12: Together with 5 mutations previously described in 6 alleles from Swedish patients (32, 33), mutations were found in 10 additional alleles, 7 of the mutations are novel (see Table II). Patient 102 carries a silent mutation affecting the last base of exon 14, which is a potential splice site. The bioinformatic tool Mutation Taster2 predicts this variant to be disease-causing (http://www.nature.com/nmeth/journal/v11/ n4/full/nmeth.2890.html). SLC2744: Mutations were seen in a total of 10 alleles in the Swedish and Danish population; the p.Cys168Term mutation was the most common (70% of alleles). All mutations were previously described as causing IPS (25, 34). CYP4F22: Six alleles were shown to harbour 3 different mutations; none of them has been reported previously (see Table II). PNPLA1: One novel homozygous splice site mutation, c.778+3A>T, was found in a Swedish patient (see Table II). HI: harlequin ichthyosis; LI: lamellar ichthyosis; CIE: congenital ichthyosiform erythroderma; SICI: self-improving collodion ichthyosis; BSI: bathing suit ichthyosis; IPS: ichthyosis prematurity syndrome; CIFS: congenital ichthyosis with fine/focal scaling. The 4 last diagnoses are included in PI (pleomorphic ichthyosis) (18). IS: ichthyosis score; ES: erythema score; Co: collodion membrane at birth; Ect: ectropion; Anh: anhidrosis; PPK; palmoplantar keratoderma.