

Table I. 2016 overview of available and novel dermatologic non-invasive imaging devices

Fundamental technique and synonyms or	Most likely user, Examples of CE devices (bold for FDA-approved), and price	quality in vivo clinical trial	Features typically visualized	Advantages & unique technologic capabilities	Limitations of currently available devices	Technological developments
variations Polarization techniques (dermoscopy, polarimetry)	range All dermatologists, DermLite (3Gen), EpiScope (Welch Allyn), NevoScope (TransLite), Dermascope (American Diagnostic Corp), MoleMax (Derma Medical Systems), DermoGenius (Dermoscan), handyscope (Fotofinder), Canfield; \$0.1k to \$2k	cancer screening; melanoma	and imaging time Modestly magnified subsurface morphology including vessels; melanin distribution and other skin cancer features; instantaneous images	Rapid skin cancer screening; wide base of experienced dermoscopy users; significant improvement in sensitivity and specificity relative to unaided clinical exam; devices do not require FDA approval (Class I)	Added value highly user- and training-dependent; low resolution images; top view image (no cross- sectional images at depth)	and anticipations Mobile phone mounts and apps; advanced polarimetry techniques will extend possibilities, e.g. automatic evaluation of average nuclear morphology or tissue heterogeneity; www.dermoscopy- ids.org
Total body digital photography (TBDP), regional imaging	Pigmented lesion experts, Dermspectra, Canfield, FotoFinder, Molemax, Molesafe, MoleMap, MelanoScan, Dermoscan, Visiomed; \$10k to \$250k	Monitoring melanocytic neoplasms in high risk pigmented lesion clinics, NMSC, and inflammatory diseases	Generally same features as clinical exam; 10 min for total body	Rapidly acquire and monitor large portion of skin surface; computer algorithms help track changes and suspicious features	Challenging to rapidly present and interpret resulting large data set in clinical setting	Increasing number of commercial devices with automated image acquisition; comprehensive resource at http://isdis.net/ imaging-modalities/total-body-photography/
Confocal microscopy (LSCM, CSLM, RCM)	All dermatologists willing to invest in necessary training, six category 1 CPT reimbursement codes; Vivascope (Caliber ID and Mavig, formerly Lucid), Stratum (Optiscan); \$100k	Identify diverse lesions for which biopsy can be avoided; preoperative mapping of malignancies including lentigo maligna for reduced surgical defects; melanoma vs benign nevi sens 97%, spec 83% ^a diagnosis of equivocal lesions vs BCC sens 100%, spec 89% ^b	Microscopic structures as in H&E but only in horizontal (en face) sections; 25 min for 6 x 6 mm image stack (including prep time described in CPT 96932)	Highest accuracy; only imaging technology with Medicare reimbursement; video-rate single-lesion, histology-grade (<1 µm) resolution of cellular components based on scattered light; able to view dendrites on melanocytes (unachievable with standard H&E)	En face views best interpreted by experienced confocalist; difficult to detect invasion through dermal- epidermal junction and other depth-resolved features such as melanoma stage or HAK vs SCC; unable to image beneath papillary dermis (limited to 0.25 mm depth)	Intraoperative use, e.g. coupled to laser ablation; combination with fluorescent techniques; working group at http://www.confocal- icwg.com/
Spectral (multispectral, hyperspectral, RGB, infrared thermography) imaging	Few dermatologists, category 3 CPT codes for research use; MelaFind (Melasciences) \$30k; SIAscope (MedX) with SIMSYS or MoleMate software \$6k - \$8k; Dermilte II MS (3gen) \$1k; TiVi (WheelsBridge) \$20k	Help triage pigmented lesions for biopsy; for melanoma vs nevus, Melafind sens 98.3%, spec 9.9% whereas SIAscope sens 80%, spec 76% ^d ; clinical research with TiVi	Macroscopic views of erythema and blanching, oxy- & deoxyhaemoglobin and melanin; Siascope 55 for single 11 x 11 mm image; Melafind 45s for single image up to 22 x 22 mm; TiVi 30fps wide field or single lesion		Large data set interpretation highly dependent on training set that computer algorithms use; top view image (no cross-sectional images at depth)	Research needed correlating spectral properties of skin to disease; handheld spectral polarization camera probes operating on tablets
Optical coherence tomography (low coherence interferometry, FF-OCT, GD-OCT)	Few academic dermatologists, Vivosight (Michelson Diagnostics), Light-CT (LLTech), Skintell (Agfa), Nitid (DermaLumics), SkinDex300 (ISIS Optronics); \$130-\$180k	Depth demarcation and reduction of presurgical biopsy rate for BCCs; dynamic blood flow imaging; as adjunct to expert dermoscopy exam, sens not significantly improved, but spec for BCC improved from 54% to 75% ^e		Optical analogue of ultrasound; images relatively deep in dermis (~1 mm), able to image flow with speckle variance or Doppler; images in same plane of view (vertical) as traditional H&E	Diagnostic accuracy limited by lateral resolution (Vivosight 8 μ m, Skintell 3 μ m with adaptive optics). FF-OCT overcomes this (Light-CT resolution 1 μ m) but in excised tissue and limited to 0.2 mm depth	sensitive OCT; potential resolution improvement with Gabor domain
Interferometry (dynamic light scattering, laser Doppler flowmetry, LDPI, laser speckle imaging, LSPI, LSFG, LASCA, MESI)	: <i>Research centres</i> , FluxExplorer (Microvascular Imaging), Moor, Perimed, Lisca	Skin grafts, vascular lesion treatment monitoring, patch test quantification, Raynaud's scoring, scar evaluation; in detection of active morphea sens 80% spec 77% in single- centre trial ⁶	Colour-coded perfusion image reflecting blood flow level or velocity; imaged area adjustable; 1s for 50 x 50 mm	Low cost, non-contact; rapidly evaluates blood flow over a large area (up to 500 x 500 mm)	Lower resolution (>100 µm)	Combination with OCT
Vibrational spectroscopy (Raman, FTIR)	Research centres, gen2-SCA (RiverD) \$100k to \$250k; Aura (Verisante) \$65k	Determining skin hydration, antioxidant levels, and distribution of cosmetics and other topical treatments; diagnostically, benign (including SK) vs. malignant (including AK) lesions had sens 90–99%, spec 75–20% in single-centre trial ⁹	acquired in seconds but without yielding actual images	already available, e.g. carotenoid	Rapid high resolution volumetric imaging impractical as Raman effect (inelastic scattering) several orders of magnitude weaker than reflectance (elastic scattering) or fluorescence; spectra are difficult to interpret for unknown compounds	Research needed correlating Raman signatures to disease; more complex non-linear implementations (e.g. CARS, stimulated Raman) enable rapid imaging for some specific chemical signature lines

E. Tkaczyk

Table I. Contd.

Fluorescence (autofluorescence lifetime imaging, photodynamic diagnosis, fluorescence videomicroscopy)	Research centres, SkinSpect (Spectral Molecular Imaging)	Presently early research phase; not used as single modality; primarily used to enhance confocal images, especially in perioperative imaging	Images of added or intrinsic fluorescent compounds		Little dermatologic clinical data; limited by width of fluorescence absorption and emission lines and few FDA-approved exogenous fluorescent compounds (fluorescein, indocyanine green, methylene blue)	Much R&D needed
Diffuse optics (spatial frequency domain imaging)	Research centres and wound care physicians, Ox-Imager (Modulated Imaging) \$100k	Presently early research phase; preliminary data in wound monitoring, burn thickness assessment, and surgical flap viability prediction based on blood supply	Haemoglobin total concentration and oxygenation; optical properties of skin (scattering, absorption); 1s for two frequency scan, 25s for full scan	Non-contact imaging of large area (size adjustable up to 200 x 150 mm)	Little dermatologic clinical data; low resolution (>100 $\mu m)$	Much R&D needed
Nonlinear optical imaging (multiphoton, SHG, two photon fluorescent, coherent Raman, CARS, stimulated emission imaging)	Few research centres, DermaIinspect, MPTflex (JenLab) \$400k	Presently early research phase; preliminary data for diagnosis of melanoma vs benign nevi sens 75%, spec 80% ^h	Similar features as corresponding linear modalities above; molecular composition and microscopic structures; few seconds for 0.35×0.35 mm image at single depth	High resolution (<1 µm) sensitive and label-free quantitative measurements of many intrinsic chemicals (such as collagen, NADH, pheo- and eumelanin)	High laser cost; current CE device has higher laser intensities, much slower imaging, and slightly worse depth (about 0.2 mm) than confocal	Much R&D needed; impressive basic science results in questions of immune cell interactions, stem cell trafficking, and metabolism (including redox ratios); more advanced setups including pump-probe dynamics under development
Photoacoustic imaging (optoacoustic tomography, photoacoustic microscopy)	Few research centres, inSight, MSOT Acuity (iThera) \$150k-\$350k	Presently early research phase; preliminary data for detection of melanoma mets in sentinel lymph nodes sens 100%, spec 49% ⁱ	High-contrast, absorption- based images of melanin, oxy-, deoxyhemoglobin, lipids, and external dyes (such as indocyanine green); 5 min for 5 x 5 x 1.5 mm 3D volume at 8 µm resolution	Combines optical and ultrasound imaging; excellent melanin contrast (50x better than light microscopy); only method that can tune between extremely high resolution images (to 0.1 μ m) and depth (> 10 mm), e.g. 4 μ m resolution at 5 mm depth	Little dermatologic clinical data	Much R&D needed; early data suggests sensitive detection of melanoma metastases in circulation and lymph nodes; high resolution microvasculature assessment; pilosebaceous unit imaging

^aLangley RG. Dermatology 2007; 215: 365–372 – (125 patients single centre). ^bGuitera P. J Invest Dermatol 2012; 132: 2386–2394 – (663 patients multicentre). ^cMonheit G. Arch Dermatol 2011; 147: 188-194 – (1,251 patients multicentre). ^dTomatis S. Phys Med Biol 2005; 21; 50: 1675–1687 – (1,278 patients single centre). ^eUlrich M. Br J Dermatol 2015; 173: 428–435 – (250 patients multicentre). ^fWeibel L. et al. Arthritis Rheum 2007; 56: 3489–3495 – (111 lesions). ⁹Zhao J. et al. Analyst 2016; 141: 1034–1043– (127 lesions tested). ^hDimitrow E. et al. J Invest Dermatol 2009; 129: 1752–1758 – (53 lesions). ⁱStoffels I. et al. Sci Transl Med 2015; 7: 317ra199 – (41 sentinel lymph nodes from 20 patients).

CE: European certification; AK: actinic keratosis; BCC: basal cell carcinoma; CARS: coherent anti-stokes Raman scattering; CLSM: confocal laser scanning microscopy; CPT: current procedure terminology; DEJ: dermoepidermal junction; FF-OCT: full-field optical coherence tomography; FTIR: Fourier transform infrared spectroscopy; GD-OCT: Gabor domain optical coherence tomography; H&E: hematoxilin and eosin; HAK: hyperkeratotic actinic keratosis; LASCA: laser speckle contrast analysis; LSCM: laser scanning confocal microscopy; MESI: multi-exposure speckle imaging; MSOT: multispectral opto-acoustic tomography; NMF: natural moisturising factor; OCT: optical coherence tomography; R&D: research and development; RCM: reflectance confocal microscopy; SCC: squamous cell carcinoma; Sens: sensitivity; SHG: second harmonic generation; SK: seborrhoeic keratosis; Spe: specificity.