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Accurate biomarker-based diagnosis of psoriasis vulga-
ris has remained a challenge; no reliable disease-spe-
cific biomarkers have yet been identified. There are se-
veral different chronic inflammatory skin diseases that 
can present similar clinical and dermoscopy features to 
psoriasis vulgaris, making accurate diagnosis more dif-
ficult. Both literature-based and data-driven selection 
of biomarker was conducted to select candidates for a 
multicomponent biomarker for psoriasis vulgaris. Sup-
port vector machine-based classification models were 
trained using gene expression data from locally recrui-
ted patients and validated on 7 public datasets, which 
included gene expression data of other inflammatory 
skin diseases in addition to psoriasis vulgaris. The re-
sulting accuracy of the best classification model based 
on the expression levels of 4 genes (IL36G, CCL27, 
NOS2 and C10orf99) was 96.4%, outperforming clas-
sification based on other marker gene combinations, 
which were more affected by variability in gene expres-
sion profiles between different datasets and patient 
groups. This approach has the potential to fill the void 
of clinically applicable diagnostic biomarkers for pso-
riasis vulgaris and other inflammatory skin diseases.
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Psoriasis can be a challenging disease to diagnose, as 
no reliable disease-specific and clinically viable bio-

markers have been identified. Psoriasis is one of the most 
prevalent chronic inflammatory autoimmune diseases of 
the skin, affecting 2–3% of the population worldwide (1). 
Clinically, psoriasis can manifest itself in a broad spec-
trum of subtypes, the most common of which is psoriasis 
vulgaris (PsV) (2). PsV can share several similar clinical 
and molecular features with other chronic inflammatory 
skin conditions, such as parapsoriasis, lichen planus, pity-
riasis rosea, contact eczema, and atopic dermatitis (3–5). 
All these diseases, however, have different treatment and 
disease management strategies (6–9), which necessitates 
accurate and biomarker-based diagnosis.

Currently, the diagnosis of PsV relies mainly on the 
assessment of visible and dermoscopic symptoms by a 
clinician (10–13) or, in borderline cases, histological 
evaluation (2). Disease-specific biomarkers could also 
improve the diagnosis of PsV overlapping with other 
papulosquamous disorders and provide more accurate 
means of quantifying treatment efficacy. Years of high-
throughput “omics” research have resulted in multiple 
potential biomarkers for PsV and other inflammatory skin 
diseases, yet most of them are universal for inflammation 
and no single marker has shown to be robustly specific 
to a given disease (14).

The approach of using multiple biomarkers in combi-
nation has proven to be more robust and accurate than 
the standalone measurements of individual biomarkers 
in the context of several human diseases (15–17). With 
the advancement of computational methods, multicom-
ponent biomarkers offer a solution to overcome interin-
dividual variability in the biomarker-based diagnostics 
of complex heterogeneous diseases (18–20). As such, 
we hypothesized that using a set of biomarkers in com-
bination as a multicomponent biomarker would allow 
PsV to be distinguished from other inflammatory skin 
diseases more accurately than any of the individual mar-
kers independently. Coupling this with a low-cost gene 
expression quantification method, such as quantitative 
real-time PCR (qPCR) could result in a clinically viable 
tool for the diagnosis of PsV.

SIGNIFICANCE
This article highlights the issue that previously proposed 
gene expression-based biomarkers for psoriasis vulgaris 
are dataset-specific, and therefore perform less accurately 
in alternative groups of patients. This paper addresses this 
problem by demonstrating that combining several potential 
biomarkers into a single multicomponent biomarker results 
in more accurate classification models, which retain their 
accuracy across different datasets and patient groups with 
the inclusion of other inflammatory skin diseases. We be-
lieve that this approach has the potential to fill the void 
of clinically applicable diagnostic biomarkers for psoriasis 
vulgaris and other inflammatory skin diseases.

http://crossmark.crossref.org/dialog/?doi=10.2340/00015555-3337&domain=pdf
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Table I. Datasets comprising the test set and corresponding number of samples

GEOa Methodb PsVc Ps-NLd ADe AD-NLf LPg CEh Ci Ps-PPj Ps-Sk

GSE66511 RNA-seq 12 12 12
GSE41745 RNA-seq   3   3
GSE65832 RNA-seq 20 20
GSE83645 RNA-seq 18   5
GSE117405 RNA-seq   8   9 3 8
GSE121212 RNA-seq 28 27 27 27 38
GSE63741 Microarray 30 30 30 30 30

aNCBI GEO accession number. bGene expression quantification method. cLesional psoriasis vulgaris skin; dnon-lesional skin of psoriasis patients; elesional atopic 
dermatitis skin; fnon-lesional skin of atopic dermatitis patients; glesional lichen planus skin; hlesional contact dermatitis skin; ihealthy control skin; jlesional plaque-type 
palmoplantar psoriasis skin; klesional scalp psoriasis skin.

MATERIALS AND METHODS
Patients and sample collection

Twenty patients with psoriasis vulgaris (PsV) and 18 with atopic 
dermatitis (AD) were recruited from the Dermatology Clinic of 
Tartu University Hospital. The Ethics Review Committee on Hu-
man Research of the University of Tartu approved the protocols 
and informed consent forms used in this study. All participants 
signed an informed consent form. Detailed characteristics of 
recruited patients are shown in Appendix S11. All skin samples 
were obtained with 4-mm punch biopsy. The biopsy specimens 
were instantly frozen on dry ice and stored at –80°C (for up to 3 
months) until RNA extraction.

Public datasets included in the analysis

The NCBI GEO (https://www.ncbi.nlm.nih.gov/geo) datasets in-
cluded in the analysis are summarized in Table I. The core datasets 
used for testing the disease-specific multicomponent biomarker 
approach were the microarray dataset GSE63741 and RNA-seq 
dataset GSE121212, as these included several other inflammatory 
skin diseases in addition to PsV. Additional 5 RNA-seq datasets 
were included in the test set in order to incorporate more of dif-
ferent PsV patient groups and additional skin conditions, such as 
atopic dermatitis (AD), non-lesional skin samples of AD patients 
(AD-NL) and non-lesional psoriatic skin (Ps-NL) samples. No 
datasets including other inflammatory skin diseases (e.g. lichen 
planus or contact eczema) were found among the RNA-seq datasets 
listed in the NCBI GEO repository. 

Quantitative PCR analysis

Quantitative real-time PCR (qPCR) was used to quantify the 
expression levels of marker genes in 2 groups of locally recruited 
patients. Skin samples from the first group were collected as a 
part of a previous study (21) and consisted of 12 paired PsV and 
Ps-NL skin samples from the same patients and 12 samples from 
healthy controls (C). This dataset is hereinafter referred to as 
“qPCR dataset 1”. The same samples also constitute the GSE66511 
RNA-seq dataset. The second group consisted of 20 patients with 
PsV and 18 patients with AD. Gene expression data of these pa-
tients are hereinafter referred to as “qPCR dataset 2”. The qPCR 
experiments were conducted following MIQE guidelines (22). 
Detailed description of the methods are shown in Appendix S11.

RNA-seq data analysis

All base-space datasets were aligned to the hg38 reference genome 
using STAR v2.6 (23). Aligned reads were quantified according to 
GENCODE (24) release 26 with the “–quantMode GeneCounts” 
option of STAR. Non-default options used for read alignment are 
shown in Appendix S11. The colour-space SOLiD (Life Techno-

logies Ltd) reads of the GSE66511 dataset were mapped to the 
hg19 reference genome and exon-exon junctions using LifeScope 
software (Life Technologies Ltd) mapping module with recom-
mended settings. Mapping quality cut-off was set at 10 (MAPQ 
≥10). Aligned reads were quantified according to UCSC (25) 
RefGene annotations for hg19 using LifeScope software.

Classification models and data visualization

RNA-seq expression data was analysed and visualized as log 
transformed (base 10) or standardized (z-score) Reads Per Ki-
lobase of transcript per Million mapped reads (RPKM) values. 
Gene expression values from qPCR were analysed and visualized 
as –ΔΔCq values. Microarray gene expression data were analysed 
and visualized as Cy5/Cy3 intensity ratios. All gene expression 
values were standardized prior to being used in the support vector 
machine (SVM) models. In order to use the different gene expres-
sion measures interchangeably in a single model, a novel method 
was developed to transform the expression values of into new 
features. In brief, the expression values of the marker genes (e.g., 
IL36G, CCL27, NOS2 and C10orf99) as RPKM values, –ΔΔCq 
values or Cy5/Cy3 intensity ratios were transformed into poly-
nomial equation coefficients followed by z-score standardization. 
This method is limited to be used with a small number of genes. 
The transformation method is explained in detail in Appendix S11.

SVM models were implemented using the e1071 package (26) 
in R. Gamma and cost parameters were determined by the tune.
svm() function using values of 2X, where x was an integer in the 
range [–15, 3] for gamma and [–5, 15] for cost parameters. Linear 
(1 feature) or sigmoid (more than 1 feature) kernels were used 
in the SVM models. Leave-one-out method was used for cross-
validation (LOOCV) of the trained models. ROCR package (27) 
was used to plot receiver operating characteristic (ROC) curves 
and calculate the area under the curve (AUC).

Feature selection was conducted using the Recursive Feature 
Elimination (RFE) method from the caret package (28) in order 
to determine the best 4-gene sets for PsV classification. RFE was 
implemented using the predefined Random Forest function with 
10-fold cross-validation. RFE was conducted separately on the 
GSE63741 and GSE121212 datasets and was limited to the genes 
present in both (n = 1,419).

ggplot2 package (29) or R base graphics (30) were used for 
data visualization. Principal components were calculated using 
prcomp() function from the Stats package (30). Spearman’s 
correlation coefficients were calculated to assess correlations 
between gene expression levels and patient characteristics for 
the PsV samples from both qPCR datasets and AD samples from 
the qPCR dataset 2.

Experimental design

Literature review for identification of proposed biomarkers. A 
review of published studies was conducted to identify potential 
biomarkers for PsV. The search was performed using the PubMed 
search engine (https://www.ncbi.nlm.nih.gov/pubmed) and the 

https://doi.org/10.2340/00015555-3337
https://doi.org/10.2340/00015555-3337
https://doi.org/10.2340/00015555-3337
https://doi.org/10.2340/00015555-3337
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keyword “psoriasis biomarker”. All review and research articles 
published in the years 2012 to 2017 were reviewed, including 
relevant research articles cited by the review articles. The full list 
of reviewed publications is shown in Table SI1. 
Validation of selected biomarker candidates. The selected gene 
expression-based biomarker candidates were validated in 2 steps. 
First, the differential expression of the marker genes was confirmed 
in RNA-seq dataset (GSE66511) of locally recruited patients and 
healthy controls followed by additional quantification by qPCR. 
Secondly, the disease-specificity of the selected markers was 
assessed using the GSE63741 and GSE121212 datasets and ad-
ditionally recruited 20 patients with PsV and 18 patients with AD.
Classification model construction and testing. Five additional 
public datasets were included and classification models trained 
on qPCR data of locally recruited patients were validated on a 
total of 7 public datasets comprised of different patient groups. 
As an alternative data-driven biomarker selection approach, the 
GSE63741 and GSE121212 datasets were used to select 4-gene 
combinations that best differentiate PsV from other samples. 
Similarly, these multicomponent biomarkers were then validated 
on the full test set.

A graphical overview of the study design is presented in Fig. 
S1; Appendix S21).

RESULTS

Biomarker candidates from the literature 
From the review of published studies reporting biomar-
kers of PsV, it became evident that the expression levels of 
specific genes in the lesional skin hold the most promise 
for disease-specific biomarkers. In contrast, circulatory 
biomarkers seem to reflect more general inflamma-
tory processes (14). As a result, 5 genes (IL36G, NOS2, 
CCL27, C10orf99 and IGFL1) with altered expression 
levels in PsV lesions, which had previously been propo-
sed as biomarkers of PsV by 3 independent studies, were 
selected to form the multicomponent biomarker (Table 
SII, Appendix S21).

Confirmation of differential expression of the selected 
genes
The differential expression of the selected genes was 
confirmed in a previously published RNA-seq dataset 
(GSE66511) of 12 paired PsV skin samples and non-
lesional skin samples from the same patients and 12 
healthy controls. Despite the minor overlap of expression 
levels in PsV and Ps-NL or C samples in case of IGFL1, 
NOS2 and CCL27, the differences in expression of the 
genes, as previously described, were apparent. Expres-
sion levels of the marker genes were further quantified by 
qPCR. The combined expression pattern of the 5 genes 
clearly distinguished PsV samples from Ps-NL and C 
skin samples (Fig. S2; Appendix S21). 

Disease-specificity of the selected genes and classifica
tion models
The disease-specificity of the selected biomarker genes 
and the classification models based on them were first 

assessed independently on the GSE63741, GSE121212, 
and combined qPCR datasets. It should be noted that the 
probes for one of the selected marker genes (IGFL1) 
were not included on the microarrays used to create the 
GSE63741 dataset and this was a limiting factor to the 
analysis.

The GSE63741 dataset is characterized by significantly 
higher IL36G expression levels in PsV samples compa-
red with other inflammatory skin diseases and control 
samples (Fig. 1a), making it a near perfect biomarker for 
PsV, as reported by D’Erme and colleagues (31). None 
of the 3 other biomarker genes displayed comparable 
disease-specific qualities in this dataset, as C10orf99 
was upregulated in all the inflammatory skin diseases, 
CCL27 was downregulated in both PsV and LP samples, 
and NOS2 displayed only minor upregulation in all skin 
disease samples compared with controls. Leave-one-out 
cross-validation (LOOCV) of a SVM classification mo-
del based on IL36G expression yielded perfect accuracy 
(AUC=1) for this dataset. The NOS2 and CCL27 combi-
nation proposed by Quaranta and colleagues (5) resulted 
in a relatively poor classification model (AUC=0.84) in 
this case. A model based on all 4 genes performed with 
LOOCV accuracy comparable to IL36G-based classifica-
tion (Fig. S3a–c; Appendix S21).

Interestingly, in the combined qPCR datasets with 2 
independent PsV groups, IL36G expression levels alone 
did not allow as accurate classification of PsV samples 
(AUC=0.95) due to the overlap of expression levels in the 
PsV and the AD groups (Fig. 1b). In the confines of this 
dataset, a SVM classification model based on NOS2 and 
CCL27 outperformed classification based on only IL36G. 
Classification accuracy further improved slightly with the 
4-gene (excluding IGFL1) and 5-gene models. Similarly, 
the 4-gene and 5-gene models displayed better results 
compared with the IL36G or NOS2 and CCL27-based 
models for the GSE121212 dataset due to overlapping 
expression levels in the different groups of samples (Fig. 
1c and Fig. S3d–k; Appendix S21). 

The recurrent theme in the comparison of the 3 
datasets was the consistent accuracy of sample clas-
sification by the 4-gene model (and the 5-gene model, 
where applicable), as the combined expression profile 
of these genes better survived the effect of inter-dataset 
variability (Fig. 1d–f). Therefore, the 4-gene model 
based on the expression levels of L36G, CCL27, NOS2 
and C10orf99 with high LOOCV accuracies ( 95%) in 
all 3 independent datasets was selected as the preferred 
disease-specific classification model for PsV (Fig. S4; 
Appendix S21).

In addition, the correlations between the marker genes 
and patient characteristics in the qPCR datasets were 
assessed, but no statistically significant (p ≤ 0.05) corre-
lations were observed between the expression levels of 
the marker genes and disease severity in either the PsV 
or the AD group (Table SIII; Appendix S21).

https://doi.org/10.2340/00015555-3337
https://doi.org/10.2340/00015555-3337
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Fig. 1. Overview of marker gene expression levels in the GSE63741, GSE121212 and qPCR datasets. (a) Expression levels as Cy5/Cy3 intensity 
value ratios of the 4 out of 5 biomarker genes across 30 psoriasis (Ps), 30 atopic dermatitis (AD), 30 contact eczema (CE), 30 lichen planus (LP) and 
30 healthy control (C) skin samples in the GSE63741 dataset. The expression levels of IGFL1 were absent from this dataset. (b) Expression levels as 
–ddCq (ΔΔCq, quantitation cycle of the target gene adjusted for quantitation cycles of reference genes and calibration sample) values of the 5 marker 
genes for 32 psoriasis vulgaris (PsV_1 and PsV_2), 18 AD, 12 non-lesional psoriasis (Ps-NL) and 12 C skin samples in the qPCR datasets. (c) Expression 
levels as log10 of RPKM (Reads Per Kilobase of transcript per Million mapped reads) values of the 5 marker genes for 28 PsV, 27 Ps-NL, 27 AD and 38 
C skin samples in the GSE121212 dataset. The first 2 principal components of the 4 (or 5) gene expression values in the (d) GSE63741, (e) qPCR, and 
(f) GSE121212 datasets. Error bars represent 95% confidence intervals.

Test set assembly and transformation of gene expression 
values
A test set comprised of 7 public datasets (Table I) totalling 
504 samples was assembled to fully test the performance 
of the 4-gene classification model. Gene expression 
values in these datasets were transformed into new 
features to correct for the differences in values obtained 
by different gene expression quantification methods 
(RNA-seq, microarray, and qPCR). The transformation 
of expression values of the 4 marker genes (IL36G, 
CCL27, NOS2 and C10orf99) into polynomial equation 
coefficients followed by z-score standardization rescaled 
the RPKM values, Cy5/Cy3 intensity ratios, and –ΔΔCq 
values, while retaining the overall expression profiles 
(Fig. 2 and Figs S5–8; Appendix S21). This enabled the 
interchangeable use of different gene expression values in 
a single model. Transformation into polynomial equation 
coefficients prior to z-score standardization was essen-
tial to rescaling the data and maintaining the expression 
pattern in the form of new features, and outperformed 

simple z-score standardization without transformation 
(Fig. S9; Appendix S21).

Model testing

A new 4-gene model was trained on the transformed 
qPCR data with a LOOCV accuracy of 95.9%, compa-
rable to the model trained on untransformed data (Fig. 
S10; Appendix S21). Three PsV samples produced false-
negative predictions during LOOCV. In these samples, 
the expression levels of IL36G and NOS2 were conside-
rably lower than the majority of the PsV samples (Fig. 
S11; Appendix S21).

The model was then tested on an assembled set of 493 
samples, labelled PsV or Ot (other). The accuracy of 
model predictions on the validation set was 96.4%, with 
6 false-negative and 9 false-positive calls, with PsV as 
the positive outcome (Fig. 3). Falsely predicted samples 
in both the training and test set differentiate from their 
respective groups based on their gene expression profiles 

https://doi.org/10.2340/00015555-3337
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Fig. 2. Expression values of initial marker genes transformed to new features. (a) 
Untransformed expression values for the 4 marker genes as Reads Per Kilobase of transcript 
per Million mapped reads (RPKM) values for RNA-seq datasets (GSE117405, GSE121212, 
GSE41745, GSE65832, GSE66511, and GSE83645), Cy5/Cy3 intensity value ratios for the 
GSE63741 microarray dataset or –ΔΔCq values (quantitation cycle of the target gene adjusted 
for quantitation cycles of reference genes and calibration sample) for qPCR datasets. Samples are 
coloured on the graphs as lesional psoriasis vulgaris skin samples (PsV: red) or other samples 
(Ot: blue). The latter consists of non-lesional skin samples of psoriasis vulgaris patients, atopic 
dermatitis, non-lesional atopic dermatitis, contact eczema, lichen planus and healthy control 
skin samples. (b) Expression values for the 4 marker genes transformed into new features 
intercept, x, x2 and x3 as in y=β0 + β1 x + β2 x

2 + β3 x
3 + ε1. The polynomial line equation 

was obtained by coding the 4 marker genes as integers and using a linear model to fit a degree 
3 polynomial line to connect expression values along the x-axis. The new features were further 
standardized as z-scores, where standard deviation (SD) and mean were calculated separately 
for each gene and expression quantification method group (RNA-seq, microarray or qPCR) 
successfully rescaling the gene expression values obtained by different quantification methods.

(Fig. S12; Appendix S21) and are listed in Table SIV; Ap-
pendix S21. Classifiers based solely on IL36G expression 
levels or the combination of NOS2 and CCL27 genes, 
resulted in respective prediction accuracies of 94.7% and 
74.7% on the test set (Fig. S13; Appendix S21).

The SVM model was also used to classify 8 scalp 
psoriasis (Ps-S) and 3 plaque-type palmoplantar psoriasis 
(Ps-PP) samples from the GSE117405 dataset. Seven 
Ps-S samples were classified as PsV and all of the Ps-PP 

were classified as Ot. Ps-PP samples dis-
played NOS2 expression levels compa-
rable to the expression levels of healthy 
control samples from the same dataset, 
leading the model not to recognize them 
as PsV (Fig. S14; Appendix S21).

Data-driven alternative to biomarker 
candidate selection
In addition to the set of marker genes se-
lected based on the results of previously 
published studies, a data-driven biomar-
ker selection was conducted using the 
GSE63741 and GSE121212 datasets. 
The RFE method was used to select the 
best 4-gene combinations differentiating 
PsV samples in both datasets. Inherent 
to the GSE63741 dataset, IL36G proved 
to be the best PsV-specific biomarker 
and including the 3 next best genes, 
CRABP2, S100A7A, and IL36RN, mar-
ginally increased resulting prediction 
errors (Fig. S15a; Appendix S21). In case 
of the GSE121212 dataset, prediction 
errors decreased with each added mar-
ker gene (Fig. S15b; Appendix S21). 
The top 4 predictors of PsV based on 
the GSE121212 dataset were SPRR2A, 
PRELP, ARG1 and KYNU. The expres-
sion levels of these 8 genes were mostly 
consistent between the 2 datasets, with 
the exception of PRELP, which was 
downregulated in PsV compared with 
AD samples in the GSE121212, but not 
in the GSE63741 dataset (Fig. 4 a–b).

Validated on their respective source 
datasets, the LOOCV accuracies of the 
SVM classification models based on 
these multicomponent biomarkers were 
98.7% and 95.9% for the GSE63741 and 
GSE121212 gene set, respectively (Fig. 
4c–d). The accuracy of the classification 
model trained on the GSE63741 set 
and tested on GSE121212 was 95.9%. 
The accuracy of the model trained and 
tested vice versa was 90.0% (Fig. 4e–f). 

When tested on the full transformed test set, the perfor-
mances of both SVM models were inferior to the initial 
multicomponent biomarker (IL36G, CCL27, NOS2 and 
C10orf99) with accuracies of 88.8% and 88.6% for the 
GSE63741-derived gene set and the GSE121212-derived 
gene set, respectively (Fig. S16; Appendix S21). The 
previously described method of data transformation was 
applied to construct the test set for these models (Figs 
S17–20; Appendix S21).
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Fig. 3. Support vector machine (SVM) classification model performance on transformed test 
set. (a) Predictions of the SVM classification model trained on transformed qPCR datasets and tested 
on 6 transformed RNA-seq and 1 transformed microarray datasets of 99 psoriasis vulgaris (PsV), 47 
non-lesional psoriasis (Ps-NL), 77 atopic dermatitis (AD), 47 non-lesional atopic dermatitis (AD-NL), 30 
lichen planus (LP), 30 contact eczema (CE), and 88 C skin samples. The predictions on scalp psoriasis 
(Ps-S) and palmoplantar psoriasis (Ps-PP) samples were not included in the calculations of different 
model performance metrics. (b) Receiver operating characteristic (ROC) plot and corresponding area 
under the curve (AUC) value based on the prediction scores obtained from testing the model trained 
on qPCR data on the assembled test set.

Fig. 4. Overview of expression levels of the genes selected by the data-driven approach in the GSE63741 and GSE121212 datasets. (a) 
Expression levels as Cy5/Cy3 intensity value ratios of the 8 biomarker genes across 30 psoriasis (Ps), 30 atopic dermatitis (AD), 30 contact eczema (CE), 
30 lichen planus (LP) and 30 healthy control (C) skin samples in the GSE63741 dataset. (b) Expression levels as log10 of RPKM (Reads Per Kilobase of 
transcript per Million mapped reads) values of the 8 marker genes for 28 PsV, 27 Ps-NL, 27 AD and 38 C skin samples in the GSE121212 dataset. The 
genes that are not marked by an asterisk were selected based on Recursive Feature Elimination (RFE) on the GSE63741 dataset and the genes that are 
marked by an asterisk were selected as the result of (RFE) on the GSE121212 dataset. Error bars represent 95% confidence intervals. (c) Results of 
leave-one-out cross-validation (LOOCV) of the classification model based on the GSE63741-derived gene set and (d) results of LOOCV of the GSE121212-
derived gene set model. (e) Results of testing the classification model based on the GSE63741-derived gene set on the GSE121212 dataset and (f) results 
of testing of the GSE121212-derived gene set model on the GSE63741 dataset.

DISCUSSION

Several gene expression-based biomarkers for PsV have 
been proposed, but none of them have been completely 
discriminatory for PsV or confirmed in multiple patient 
cohorts. In the present study, it was hypothesized that 
using a classification model based on several potential 
biomarkers proposed by separate studies with indepen-
dent patient cohorts would ensure improved results in the 
biomarker-based diagnosis of a heterogeneous disease, 

such as PsV. As such, the aim of 
this study was to present a proof 
of concept classification model 
capable of more accurate clas-
sification of PsV samples across 
different patient groups than any 
of the marker genes individually. 
A SVM classification model was 
trained based on the expression 
levels of 4 genes (IL36G, CCL27, 
NOS2 and C10orf99) in the lesio-
nal skin tissue using 2 independent 
sets of samples from locally re-
cruited patients. The model was 
validated on 7 different public 
datasets, resulting in a 96.4% ac-
curacy of distinguishing PsV from 

other inflammatory skin diseases. This multicomponent 
biomarker combination outperformed classification ba-
sed on single marker genes and other gene sets, which 
were more affected by the variability of gene expression 
profiles between different datasets and patient groups.

This study was limited by the availability of (gene 
expression) data from large patient cohorts and the 
inter-dataset variability inherent to the available datasets. 
Conventional application of machine learning methods 
implies large datasets, the absence of which can lead 
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to limited accuracy and high possibility of overfitted 
models trained on small datasets (32–34). Public gene 
expression datasets of inflammatory skin diseases other 
than psoriasis are scarce and recruiting a large number 
of patients with different inflammatory skin diseases for 
a conventional machine learning application would be 
an extensively laborious task. Therefore, in this study, 
support vector machine (SVM) classification models 
were used in an unconventional setting with emphasis 
on training and testing the model on data from different 
groups of patients.

Defining the best possible combination of biomarkers 
for PsV diagnostics is heavily dependent on the available 
datasets and the possibility to integrate them. The avail
ability of 2 larger datasets (GSE63741 and GSE121212) 
and the novel method developed as a part of this study to 
normalize different gene expression measures allowed 
the possibility to pursue this direction. RFE was used to 
find combinations of genes best differentiating PsV from 
other samples, similarly to the study by Guo et al. (35), 
but with the exception of including other inflammatory 
skin disease samples as well. Although this analysis was 
limited to the genes present in the GSE63741 microarray 
dataset, it did provide data-driven alternatives to the 
hypothesis-based selection of the genes making up the 
multicomponent biomarker.

Perhaps the most important observation in this study 
was that the expression profiles of individual marker 
genes were notably variable across different datasets. In 
the GSE63741 dataset, the expression levels of IL36G 
were uniformly different in PsV compared with AD skin 
samples, but displayed an overlap of expression values 
in the qPCR and GSE121212 datasets. Interestingly, in 
case of the 3 outlying PsV samples in the qPCR dataset 
in terms of lower IL36G expression levels, the lesions 
of these patients exhibited hallmark signs of PsV and 
were in the process of acute exacerbation during the 
time of sampling. Similarly, the expression levels of 
NOS2 and CCL27, a gene pair that has previously been 
used to differentiate PsV from eczema samples (5), were 
surprisingly variable across the datasets included in this 
study and did not result in highly accurate predictions 
when used in a SVM classification model. For example, 
in the GSE63741 dataset, NOS2 displayed comparable 
expression levels in PsV, AD, and CE samples and 
CCL27 was downregulated in both PsV and LP samp-
les. Conversely, in the confines of the qPCR datasets, 
expression levels of NOS2 and CCL27 in the PsV 
samples compared with AD samples were in line with 
the result reported by Quaranta and colleagues (5). From 
amongst the genes selected based on RFE, PRLEP was 
downregulated in PsV samples in the GSE121212 and 
GSE66511 datasets and improved the classification ac-
curacy, while in the GSE63741 and GSE83645 datasets 
this was not the case.

Many factors could potentially lead to considerable dif-
ferences between individual datasets (groups of patients), 
e.g. differences in patient characteristics, disease severity, 
cellular composition of the skin biopsy (36), genetic 
background (37, 38), non-representative sample sizes, or 
the effects introduced by the use of different expression 
quantification methods. Nevertheless, it was apparent 
throughout the 3 independent datasets used for LOOCV 
that the 4-gene (IL36G, CCL27, NOS2 and C10orf99) 
multicomponent biomarker retained its accuracy, while 
individual genes displayed inconsistent expression levels. 
The combined expression profile of the genes making up 
the multicomponent biomarker was less affected by dif-
ferences between datasets (groups of patients) compared 
with individual genes, demonstrating that the former to 
be a more consistent biomarker. 

The performances of all constructed classification 
models were tested on the assembled set of 493 samples, 
which consisted of several inflammatory skin disease 
samples in addition to PsV and control samples (Table 
I). As this was an imbalanced dataset, with 99 of the 493 
being PsV samples, the combined measure of precision 
and recall, the F1 score, is best suited to compare the 
different models (39). The 4-gene (IL36G, CCL27, NOS2 
and C10orf99) model yielded F1 score of 0.925 (96.4% 
accuracy) and the next-best model based only on IL36G 
resulted in a F1 score of 0.880. Classification based on 
IL36G yielded a recall value of 0.818 compared with the 
0.939 of the 4-gene model, resulting in a less sensitive, 
yet slightly more precise model. Due to the inter-dataset 
variation of NOS2 and CCL27 expression levels, clas-
sification based on these genes was poorer, with a F1 
score of 0.597, falling short of the level of performance 
reported by Quaranta and colleagues. The performance 
of this classifier was heavily affected by the expression 
levels of NOS2 in the GSE63741 dataset. The RFE on 
GSE63741 and GSE121212 datasets yielded models with 
respective F1 scores of 0.732 and 0.780. Therefore, the 
data-driven selection of marker genes for the multicom-
ponent model did not result in a better combination of 
genes than the initial hypothesis-based selection.

In conclusion, combining multiple gene expression 
markers as a multicomponent biomarker allowed the 
distinction of PsV from other inflammatory skin diseases 
more accurately than any of the markers individually. 
This approach could potentially be further expanded to 
differentiate between disease subtypes (40), improve 
distinction in cases of overlap of different inflammatory 
skin disorders, and to more accurately monitor the ef-
ficacy of treatments. However, the need for validation in 
larger groups of patients remains. Coupled with a cost-
effective gene expression quantification technique, this 
approach has the potential to fill the void of clinically 
applicable biomarkers for PsV and other inflammatory 
skin diseases. 
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