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FOREWORD

Progress in intensive care has improved the outcome of patients 
with severe brain damage and increased their chances of sur-
viving and developing a severe disorder of consciousness such 
as the vegetative or minimally conscious states. Recent data 
have documented early recovery from the vegetative state in a 
significant proportion of patients; late recovery is also possible 
years later. There is sound neuroimaging evidence that residual 
responsiveness is also detectable in subjects who have been 
unambiguously diagnosed as being in a vegetative state and, 
by definition, isolated from the environment. This evidence 
blurs further the diagnostic distinction between the vegetative 
and minimally conscious states, and brings into question the 
current diagnostic criteria, alters the perspective of health care 
and neurorehabilitation on this issue, and has led to increased 
interest amongst the scientific community in the mechanism 
sustaining consciousness. This issue is attracting the attention 
of scientists with diverse research backgrounds, due to progress 
in the investigation of higher brain function, advances in arti-
ficial intelligence, and diffuse perception of the inadequacy of 
traditional mind/body separation.

The workshop “Consciousness and the vegetative state: to-
day” was held in Salerno, Italy, on 6 July 2010, in the framework 
of the 2nd Conference on Consciousness and Coma, with the par-

ticipation of leading scientists in neuroscience. The chairs were 
G. G. Celesia (Chicago) and W. G. Sannita (Genova/New York). 
The objectives of the workshop were to update the current char-
acterization of consciousness and related terms (which remain 
to a significant extent ambiguously defined), focus attention on 
methodological and applicative problems, and promote multi-
disciplinary interaction and collaboration. It is hoped that the 
workshop and its proceedings will facilitate sharing of relevant 
information on this issue and promote further research. 

Thanks are due to the Institute S. Anna – RAN for the suc-
cessful organization, financial support and publication on this 
special issue as part of the program for advanced teaching 
and professional upgrading “Le giornate di Crotone, yrs. XIII 
and XIV”.
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CONSCIOUSNESS: TODAY

“To demonstrate existential characters of neurons, any theo-
retically conceivable net embodying the possibility will serve.” 
(Pitts, McCulloch, 1948)

Consciousness is a multifaceted concept combining awareness 
and wakefulness. In everyday neurology it is usually equated 
to the waking state, and fluctuations in the level of vigilance 
are thought to reflect changes in brain (cortical) activation. It is 
believed to imply (subjective) experience and awareness of self 
(self-consciousness, self-detection, awareness of awareness, 
self-knowledge) and of environment (1). Jackson (2) restricted 
consciousness to the momentary relationship between the sub-
ject and the object or (in his anatomical-physiological terms) 
to the organism adjustment to the environment. However, 
perception and behaviour are possible without formal aware-
ness (3–8) and some sustained (self)consciousness also exists 
during sleep, as we remain ourselves in the most unrealistic 
dreams and are also aware of our dreaming (9).

Today, research on consciousness is expanding, with a 
major focus on its understanding in relation to cortical/brain 
activation or functional complexity, long-range connectivity, 
neuronal synchronization in selected frequency ranges, uni/
multimodal perception, motor activation, focused attention, etc. 
The major current theories about consciousness involve large-
scale information processing, social processes, or neurobiologi-
cal mechanisms (1). Distinctions between consciousness and 
attention have been documented (10–12), with implication in 
the cognitive neuroscience that consciousness could be distinct 
from other higher brain functions (13). The brain structures 
and processes thought to mediate in sustaining consciousness 
nevertheless are identified by the impairment of varying sever-
ity that results from local damage. Consciousness thus appears 
to be the result of a complex functional arrangement in which 
sustained sensory input, activation of non-specific ascending 
systems and primitive motor systems, activation of cortical 
neurones at due frequency, sensory-motor interaction, and 
balanced metabolism and neurotransmitters modulation are 
crucial (14, 15). This complex functional set-up conceivably 
also accounts for some specificity of the neurological signs 
predicting the outcome from the vegetative state (also referred 
to as unresponsive wakefulness syndrome) (16) and its evolu-
tion into a minimally conscious state (17–23).

Further investigation is needed to define the extent to 
which the reported electrophysiological, functional magnetic 
resonance imaging, positron emission tomography scan or 
autonomic changes imply some specificity of response or have 
clinical or prognostic relevance. This caveat notwithstand-
ing, neuroimaging has documented retained connectivity in 
segregated networks in response to stimulus conditions in 
both minimally conscious and vegetative state subjects, with 

indication of the capability of the severely damaged brain to 
express surviving modular functions in the absence of the 
integrative processes necessary to consciousness (24–28). 
Although restricted to a relatively small portion of patients 
(29), this evidence further promoted research on the neuronal 
correlates of (un)consciousness (30) and expanded the clinical 
scenario. As a result, the vegetative and minimally conscious 
states appear today neither static nor homogeneous, and a 
tacit revision of the anatomo-functional set-ups underlying 
these conditions is de facto underway, warranting a formal 
nosographic revision of the current descriptive categories or 
accuracy of diagnosis (16, 31).

Regionally-mediated micro-consciousness processes have 
been proposed based on evidence of local neuronal organiza-
tion in visual perception (32). On the other hand, increased 
synchronization between large neuronal populations of distinct 
areas related to perceptual dominance has been documented 
during conscious visual perception (33). The observation is 
consistent with evidence suggesting that neuronal activity syn-
chronizes across cortical areas at conscious perception and with 
the theories of neural integration and complexity accounting for 
the properties of conscious experience and consciousness itself 
(13, 34–37). Long-range synchronization (e.g. in the gamma 
range) is thought to mediate in conscious perception (33) as it 
does in binding visual features and in all conditions in which 
neurones are selectively assembled to respond to any momentary 
functional requirement (38–44). However, its role in sustaining 
consciousness remains undocumented (45). In this respect, the 
major unsolved problem of biology is how billions of nerve cells 
work together to create consciousness (46, 47).

Consciousness is topical and is increasingly attracting 
scientists in neuroscience, medicine, neurocomputing, artifi-
cial intelligence, and robotics. Interest is increasing with the 
rapid progress in the investigation of higher brain function, 
advances in artificial intelligence, and diffuse perception of 
the inadequacy of traditional mind/body separations. The issue 
is also crucial in methodological and bioethical controversies 
pertaining to medicine and public or private healthcare (16, 
31, 48). However, consciousness and related terms remain 
to a significant extent ambiguously defined and inadequately 
characterized. Peculiar conditions, such as epilepsy or the 
vegetative and minimally conscious states, may question 
the correlation between wakefulness and awareness and the 
available computational models of brain activity (30, 49, 50). 
Research attempting to correlate the contents of conscious 
experience with representations in specific neural populations 
relies to a relevant extent on the linguistic neutrality of “cor-
relates” when the experimental paradigms and explanatory 
canons of neuroscience are not neutral about the mechanical 
relations with the brain and are supposed to investigate causes 

Included in the special issue: 
CONSCIOUSNESS AND THE VEGETATIVE STATE: TODAY 

J Rehabil Med 2012; 44: 481–516
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(51). A taxonomy of conscious, preconscious, and subliminal 
processing is still needed (52). 

Neuroscience has advanced to the point that it appears that 
we can now treat consciousness as a scientific problem like any 
other (53), disregarding objections that it is epiphenomenal, 
not evolutionary in function, unaccountable by brain proc-
esses, unsuitable to objective investigated, etc. (53). To this 
end, a proper definition of consciousness and an up-to-date 
scrutiny of its descriptors are needed in order to be able to 
think scientifically about consciousness and to design experi-
mental studies.
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METABOLIC ACTIVITY IN EXTERNAL AND INTERNAL AWARENESS 
NETWORKS IN SEVERELY BRAIN-DAMAGED PATIENTS 
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Objective: An extrinsic cerebral network (encompassing 
lateral frontoparietal cortices) related to external/sensory 
awareness and an intrinsic midline network related to inter-
nal/self-awareness have been identified recently. This study 
measured brain metabolism in both networks in patients 
with severe brain damage. 
Design: Prospective [18F]-fluorodeoxyglucose-positron emis-
sion tomography and Coma Recovery Scale-Revised assess-
ments in a university hospital setting.
Subjects: Healthy volunteers and patients in vegetative state/
unresponsive wakefulness syndrome (VS/UWS), minimally 
conscious state (MCS), emergence from MCS (EMCS), and 
locked-in syndrome (LIS).
Results: A total of 70 patients were included in the study: 
24 VS/UWS, 28 MCS, 10 EMCS, 8 LIS and 39 age-matched 
controls. VS/UWS showed metabolic dysfunction in extrinsic 
and intrinsic networks and thalami. MCS showed dysfunc-
tion mostly in intrinsic network and thalami. EMCS showed 
impairment in posterior cingulate/retrosplenial cortices. LIS 
showed dysfunction only in infratentorial regions. Coma Re-
covery Scale-Revised total scores correlated with metabolic 
activity in both extrinsic and part of the intrinsic network 
and thalami.
Conclusion: Progressive recovery of extrinsic and intrin-
sic awareness network activity was observed in severely 
brain-damaged patients, ranging from VS/UWS, MCS, 
EMCS to LIS. The predominance of intrinsic network im-
pairment in MCS could reflect altered internal/self-aware-
ness in these patients, which is difficult to quantify at the 
bedside. 
Key words: vegetative state; minimally conscious state; positron 
emission tomography; consciousness; self-awareness; traumatic 
brain injury.
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INTRODUCTION

The assessment of consciousness in severely brain-damaged 
patients remains a major challenge (1). For clinicians, 
consciousness has two main components: arousal (i.e. 
wakefulness or vigilance) and awareness (i.e. comprising 
all subjective perceptions, feelings and thoughts) (2). Aware-
ness has recently been subdivided into “external or sensory 
awareness” (i.e. perceptual awareness of the environment) 
and “internal or self awareness” (i.e. stimulus-independent 
thoughts, mental imagery, inner speech, daydreaming or mind 
wandering) (3). At the bedside, arousal is typically measured 
by examining eye opening. External awareness is assessed 
by showing the presence of reproducible command following 
or “non-reflex”/voluntary movements (4). After severe brain 
damage and the acute setting of coma, 4 different clinical 
entities can be disentangled: (i) patients who “awaken” but 
remain without reproducible signs of command following 
(i.e. vegetative state (VS), now also called “unresponsive 
wakefulness syndrome” (UWS) (5); (ii) minimally conscious 
state (MCS) patients showing reproducible, albeit fluctua
ting, signs of consciousness, but without functional commu-
nication (6); (iii) patients who emerge from MCS (EMCS) 
recovering functional communication or object use (6); and 
(iv) locked-in syndrome (LIS) patients who are fully aware 
yet completely paralysed with the exception of small eye-
movements permitting an eye-coded communication (7).

The behavioural assessment of consciousness in non-com-
municative brain-damaged patients is difficult because move-
ments can be very small, inconsistent and easily exhausted 
(8, 9). This issue is further complicated when patients have 
underlying deficits in the domain of verbal or non-verbal 
communication functions, such as aphasia, agnosia or apraxia 
(4, 10, 11). Quantifying internal or self-awareness is even 
more difficult than the assessment of external awareness in 
these patients. Most, if not all, of the employed conscious-
ness scales mainly assess command-following or the presence 
of non-reflex movements (i.e. orientation to pain or visual 
pursuit) (12, 13). Regarding the latter behaviour, some scales, 
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such as the Coma Recovery Scale-Revised (CRS-R) (14) 
explicitly require the use of a mirror (15), hence possibly 
assessing some form of self-recognition/internal awareness. 
Similarly, presentation of the patient’s own name, another 
auto-referential attention-grabbing stimulus, has been em-
ployed by some consciousness scales (e.g. the Wessex Head 
Injury Matrix (16)). Most behavioural scales, however, 
mainly, if not totally, assess external or sensory awareness 
and give little or no information about any possible form of 
internal or self-consciousness (17). 

Recent studies have started to identify the neural corre-
lates of internal and external awareness. An increasing body 
of evidence, mainly coming from functional neuroimaging 
(positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) studies) and electrophysio
logy point to the critical role of a widespread fronto-parietal 
network in the emergence of conscious awareness, also called 
“global neuronal workspace” (18–20). Within this widespread 
fronto-parietal network, two separate systems can be identi-
fied: (i) an extrinsic/lateral network encompassing lateral 
parietal and dorsolateral prefrontal cortices, mainly related 
to external awareness (i.e. stimulus-dependent or perceptual 
awareness of the environment) and (ii) an intrinsic/midline 
network encompassing midline precuneus/posterior cingulate 
and mesiofrontal/anterior cingulate cortices, mainly related 
to internal awareness (i.e. stimulus-independent thoughts 
and self-related thoughts) (3). Given our clinical limitation 
to objectively measure internal awareness, we here employed 
objective brain metabolism data obtained from PET in pa-
tients with disorders of consciousness (i.e. VS/UWS, MCS, 
EMCS) and conscious LIS and controls, aiming to measure 
differences in activity in extrinsic and intrinsic network 
activity. 

METHODS
Brain metabolism was studied by means of [18F]-fluorodeoxy
glucose-PET (FDG-PET). The clinical diagnosis was based on the 
best response obtained by repeated CRS-R (14) assessments the day 
of the PET study and the two days before and after the PET acquisi-
tion. We applied the diagnostic criteria, as published by the Multi 
Society Task Force on PVS (21), the Aspen Neurobehavioral Confer-
ence Workgroup (22) and the American Congress of Rehabilitation 
Medicine (7). Exclusion criteria for the present study were: (i) the 
presence of pre-morbid neurological disease; (ii) the presence of am-
biguous behavioural signs not permitting reliable clinical diagnosis; 
(iii) the presence of large structural brain damage exceeding 25% of 
the whole brain volume not permitting reliable spatial normalization 
to the standardized stereotaxic brain template; and (iv) the absence of 
good quality PET data not permitting reliable image reconstruction 
or correction for attenuation. The control population consisted of 
age-matched healthy volunteers (n = 39; mean age 45 years (median 
45) (range 18–80); 18 men). 

FDG-PET data were acquired after intravenous injection of 5–10 
mCi of FDG on a Siemens CTI 951 R16/31 scanner (as described 
in 23) at the University Hospital of Liège, Belgium. Data were 
pre-processed and analysed using Statistical Parametric Mapping 
(SPM8; http://www.fil.ion.ucl.ac.uk/spm) as described elsewhere 

(24–26). In brief, FDG-PET data from each subject were normalized 
to a standard stereotactic space (using a spatial template adapted to 
severe brain damage, as previously described in 27) and smoothed 
with a 14-mm full-width half-maximum isotropic kernel. The design 
matrix included the VS/UWS, MCS, EMCS and LIS patients’ and 
control subjects’ scans. Global normalization was performed by ap-
plying proportional scaling. The analyses identified brain regions 
where glucose metabolism was lower in each patient population 
compared with the control group. The resulting set of voxels values 
for each contrast, constituting a map of the t statistics (SPMt), was 
transformed to the unit normal distribution (SPMZ) and thresholded 
at p < 0.001. Results were considered significant at p < 0.01 family-
wise correction for multiple comparisons. Next, we identified brain 
areas showing a linear correlation with CRS-R total scores. Here, 
results were thresholded for significance at p < 0.001 with small 
volume correction (8 mm radius) for multiple comparisons around 
the previously identified areas (24–26).

Informed consent was obtained from all control subjects and for LIS 
and EMCS patients, and from the legal representative of all non-com-
municative patients. The study was approved by the ethics committee 
of the University and University Hospital of Liège, Belgium.

RESULTS

A total of 132 patients were prospectively enrolled, of whom 62 
were excluded because of: (i) pre-morbid neurological disease 
(8 patients); (ii) ambiguous behavioural signs not permitting 
reliable clinical diagnosis (12 patients); (iii) large structural 
brain damage (19 patients) and (iv) technical problems related 
to the FDG-PET acquisition (23 patients). Hence, 70 patients 
of the initial cohort were included for further analysis: 24 VS/
UWS (mean age 51 years (median 50.5) (range 20–78); 10 
men, 2 traumatic), 28 MCS (mean age 41 years (median 36.5) 
(range 17–81); 19 men, 16 traumatic), 10 EMCS (mean age 41 
years (median 41) (range 14–76); 8 men, 4 traumatic) and 8 
LIS (mean age 40 years (median 43) (range 22–53); 2 men, 1 
traumatic). Patients were studied after a median of 26 months 
(interquartile range 24 months). Demographic and clinical data 
are summarized in Table I. 

VS/UWS patients showed metabolic dysfunction in both 
thalami and in a widespread cortical network encompassing 
the extrinsic/lateral network (i.e. bilateral posterior parietal 
and prefrontal areas) and the intrinsic/medial network (i.e. the 
precuneus and adjacent posterior cingulate cortex and mesiof-
rontal and adjacent anterior cingulate cortex), compared with 
controls (Fig. 1). MCS patients showed metabolic dysfunction 
in both thalami and in the intrinsic/medial network. EMCS pa-
tients showed metabolic dysfunction in the posterior cingulate 
cortex and adjacent retrosplenial cortex. LIS patients showed 
metabolic dysfunction only in infratentorial regions (i.e. the 
cerebellum) (Table II). 

At the group level, CRS-R total scores showed a positive 
correlation with a widespread cortical network encompassing 
both extrinsic/lateral network (i.e. bilateral posterior parietal 
and prefrontal areas) and part of the intrinsic/medial network 
(i.e. the precuneus and adjacent posterior cingulate cortex) 
(see Table III).
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Table I. Patient demographic, clinical and Coma Recovery Scale-Revised subscore data

State
Age, 
sex Aetiology Time of PET Audition Visual Motor Verbal Comm Arousal

VS/UWS 1 30, M ARCA 25 months Startle reflex None Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 2 44, M ARCA 11 days None None Abnormal posturing 
to pain

None None With 
stimulation

VS/UWS 3 69, M ARCA 24 days None None Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

VS/UWS 4 62, M Anoxia 9 months Startle reflex None Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 5 53, M Basilar stroke 16 days None None Flexion 
to pain

None None With 
stimulation

VS/UWS 6 34, F ARCA 18 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 7 47, M ARCA 55 days Startle reflex None None Oral reflexes None With 
stimulation

VS/UWS 8 63, F ARCA 40 months Startle reflex None Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 9 65, F Anoxia 12 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 10 54, M ARCA 6 months Startle reflex None Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

VS/UWS 11 42, M Anoxia 20 days Startle reflex None Abnormal posturing 
to pain

Vocalization None Without 
stimulation

VS/UWS 12 43, M ARCA 29 days Startle reflex None Abnormal posturing 
to pain

None None Without 
stimulation

VS/UWS 13 73, F Stroke 45 days Startle reflex None Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 14 41, M ARCA 6 months Startle reflex Visual 
fixation

Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 15 56, F ARCA 43 days Startle reflex None Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 16 70, F Anoxia 52 days Startle reflex None Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 17 49, F ARCA 4 months Startle reflex None None Oral reflexes None Without 
stimulation

VS/UWS 18 52, M Anoxia 10.5 months Startle reflex Blink 
to threat

Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 19 78, F Aneurysm 32 days None None Flexion 
to pain

Oral reflexes None None

VS/UWS 20 48, M Anoxia 30 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 21 53, M Stroke 66 days Startle reflex Blink 
to threat

Flexion 
to pain

None None Without 
stimulation

VS/UWS 22 46, F Traumatism 37 days Startle reflex None None Oral reflexes None With 
stimulation

VS/UWS 23 34, F Anoxia 260 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 24 20, M Traumatism 15 days None None Flexion 
to pain

Oral reflexes None None

MCS 1 35, F Traumatism 101 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Vocalization None Without 
stimulation

MCS 2 28, F Traumatism 80 months Localization 
to sound

Visual 
pursuit

Automatic motor 
reaction

Vocalization None Without 
stimulation

MCS 3 81, F Stroke 44 days Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

Vocalization Intentional Without 
stimulation

MCS 4 37, M Traumatism 87 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes Intentional Without 
stimulation
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Table I. Condt.

State
Age, 
sex Etiology Time of PET Audition Visual Motor Verbal Comm Arousal

MCS 5 33, M ARCA 39.5 months Startle reflex Visual 
pursuit

Automatic motor 
reaction

Vocalization None Without 
stimulation

MCS 6 64, M Aneurysm 6 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
verbalization

Intentional With 
stimulation

MCS 7 50, F Aneurysm 28 days Startle reflex Visual 
pursuit

Flexion to pain Oral reflexes None Without 
stimulation

MCS 8 38, M Anoxia 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 9 81, M meningitis 
encephalopathy

46 days Localization ton 
sound

Visual 
pursuit

Localization to pain Oral reflexes None Without 
stimulation

MCS 10 19, F Traumatism 30 months Startle reflex Visual 
pursuit

Flexion 
to pain

Vocalization None Without 
stimulation

MCS 11 46, M Traumatism 17 months Startle reflex Visual 
pursuit

Flexion 
to pain

None None Without 
stimulation

MCS 12 36, M Traumatism 270 months Reproducible 
movement 
to command

Visual 
pursuit

Automatic motor 
reaction

None None Without 
stimulation

MCS 13 29, M Traumatism 46 days Startle reflex Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 14 50, F ARCA 65 days Reproducible 
movement 
to command

Blink 
to threat

Flexion 
to pain

Vocalization None With 
stimulation

MCS 15 40, M Traumatism 70 days Reproducible 
movement 
to command

Visual 
fixation

Localization to pain None None Without 
stimulation

MCS 16 50, M ARCA 7 months Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

Intelligible 
vocalization

Intentional Without 
stimulation

MCS 17 56, F Hydrocephaly 75 days Startle reflex Visual 
pursuit

None Oral reflexes None Without 
stimulation

MCS 18 63, F Stroke 17 days Consistent 
movement 
to command

Visual 
fixation

None None None With 
stimulation

MCS 19 17, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
fixation

Localization to pain Oral reflexes None Without 
stimulation

MCS 20 32, F Anoxia 15 months Startle reflex Visual 
pursuit

Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

MCS 21 50, M Anoxia 85 months Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

None Intentional With 
stimulation

MCS 22 23, M Traumatism 11 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 23 22, M Traumatism 99 months Startle reflex Visual 
fixation

Automatic motor 
reaction

None None Without 
stimulation

MCS 24 27, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 25 30, M Traumatism 131 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None With 
stimulation

MCS 26 36, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 27 65, M Traumatism 21 months Reproducible 
movement 
to command

None Abnormal posturing 
to pain

Vocalization None With 
stimulation
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Table I. Condt.

State
Age, 
sex Etiology Time of PET Audition Visual Motor Verbal Comm Arousal

MCS 28 23, M Traumatism 73 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Intentional Attention

EMCS 1 38, M ARCA 45 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 2 45, F Traumatism 6 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 3 32, M Traumatism 26 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 4 37, M ARCA 9 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 5 14, M Traumatism 14 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 6 56, M Stroke 64 days Consistent 
movement 
to command

Object 
localization

Functional use of 
object

Intelligible 
vocalization

Intentional Attention

EMCS 7 25, M Traumatism 9 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 8 44, M Stroke 7.5 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 9 44, M ARCA 88 days Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 10 76, F Intoxication 81 days Reproducible 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

LIS 1 53, M Basilar stroke 81 days Reproducible 
movement 
to command

Visual 
pursuit

Abnormal posturing 
to pain

Vocalization Intentional None

LIS 2 47, F Basilar stroke 20 days Reproducible 
movement 
to command

Object 
recognition

Flexion to pain Oral reflexes Intentional Without 
stimulation

LIS 3 39, M Traumatism 51 months Reproducible 
movement 
to command

Object 
recognition

Flexion to pain Oral reflexes Intentional Attention

LIS 4 44, F Basilar stroke 52 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

None Functional Attention

LIS 5 44, F Basilar stroke 19 days Consistent 
movement 
to command

Object 
recognition

Flexion 
to pain

Oral reflexes Functional Attention

LIS 6 22, F Basilar stroke 14 days None None Flexion 
to pain

Oral reflexes None None

LIS 7 27, F Basilar stroke 71 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

LIS 8 42, F Brain stem 
haemorrhage

56 days Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

None Intentional With 
stimulation

PET: positron emission tomography; VS/UWS: vegetative state/unresponsive wakefulness syndrome; MCS: minimally conscious state; EMCS: 
emergence from MCS: LIS: locked-in syndrome; M; male; F: female; Comm: communication; ARCA: cardiac arrest. 
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form of internal/self-awareness: visual pursuit in response 
to a moving mirror (36). 

In our view, the current data could shed some light on im-
paired internal/self-awareness in MCS via the study of patients’ 
residual brain function. An increasing body of evidence points 
to the critical role of the intrinsic network in the emergence of 
internal/self-awareness including stimulus-independent cogni-
tive processes, such as daydreaming, mental imagery, inner 
speech and self-oriented thoughts (37–40). In fMRI studies, 
the latter network, recorded during the so-called “resting state” 
condition has also been coined “default mode network” (41–
43). In both VS/UWS and MCS patients a significant thalamic 
metabolic impairment was identified, in line with previous PET 
(29, 30, 44) and diffusion tensor imaging (45) MRI studies, 
and post-mortem neuropathology (46). This finding can also 
be related to the clinical observation that both patient groups 
have fluctuating arousal levels. Indeed, in our cohort 10 out of 
24 (42%) VS/UWS and 7 out of 28 (25%) MCS showed CRS-R 

DISCUSSION

Our results in VS/UWS of different aetiologies show a wide-
spread fronto-parietal cortical dysfunction, in agreement with 
previous studies (9, 28–30). We observed a hypometabolism 
in the external network encompassing left and right lateral 
parietal and lateral prefrontal cortices and in the internal 
network encompassing midline precuneus/posterior cingu-
late and mesiofrontal/anterior cingulate cortices. In MCS 
patients it seems that the extrinsic/lateral network is less 
impaired than is the intrinsic/medial network. This result 
is consistent with the clinical finding that these patients 
show evidence of external/sensory awareness, known to 
depend upon the functional integrity of the extrinsic/lateral 
fronto-parietal system (3, 31–35). The predominance of 
intrinsic/midline network impairment in MCS could reflect 
an impaired internal/self-awareness in these patients, which 
is very difficult to quantify at the bedside. Indeed, CRS-R 
assessments only have one item possibly assessing some 

Table II. Coordinates of peak voxels of hypometabolic areas in vegetative 
state/unresponsive wakefulness syndrome (VS/UWS), minimally conscious 
state (MCS), emergence from MCS (EMCS) and locked-in syndrome 
(LIS)

Areas x (mm) y (mm) z (mm) Z p

VS/UWS
Right thalamus 8 –18 4 5.21 < 0.0001
Left thalamus –2 16 2 4.94 < 0.0001
Right lateral parietal 50 18 0 4.5 < 0.0001
Left lateral parietal –38 –72 42 7.29 < 0.0001
Right lateral prefrontal 52 –4 52 Inf < 0.0001
Left lateral prefrontal –34 4 54 7.56 < 0.0001
Precuneus/posterior 
cingulate 

2 –36 34 Inf < 0.0001

Mesiofrontal/anterior 
cingulate 

2 –36 34 Inf < 0.0001

MCS
Right thalamus 4 –18 2 7.37 < 0.0001
Left thalamus –4 –20 2 4.2 < 0.0001
Precuneus/posterior 
cingulate 

0 –36 32 Inf < 0.0001

Mesiofrontal/anterior 
cingulate 

6 18 30 6.22 < 0.0001

EMCS
Posterior cingulate/
restrosplenial 

–2 –48 22 5.49 < 0.0001

LIS
Cerebellum –38 –68 –38 3.88 < 0.0001

Inf: inferior than 0.0001.

Table III. Coordinates of peak voxels from areas showing a linear positive 
correlation with Coma Recovery Scale-Revised total scores

Regions x (mm) y (mm) z (mm) Z p

Right lateral parietal 50 18 0 4.5 <0.0001
Left lateral parietal –58 –50 38 4.85 <0.0001
Right lateral prefrontal 52 –4 52 Inf <0.0001
Left lateral prefrontal –34 4 54 7.56 <0.0001
Precuneus/posterior cingulate 2 –36 34 Inf <0.0001

Inf: inferior than 0.0001.

Fig. 1. Areas with significant metabolic impairment (blue) in vegetative 
state/unresponsive wakefulness syndrome (VS/UWS, n = 24), minimally 
conscious state (MCS, n = 28), emergence from MCS (EMCS, n = 10) and 
locked-in syndrome (LIS, n = 8) compared with age-matched controls 
(n = 39) (thresholded at p < 0.01 family-wise correction for multiple 
comparisons). The lower panel shows the areas where metabolic 
activity correlated with Coma Recovery Scale-Revised (CRS-R) scores 
(thresholded at uncorrected p < 0.001; red). Note that in VS/UWS there is a 
metabolic dysfunction in the thalamus (T) external network encompassing 
left and right lateral parietal (LP) and lateral prefrontal (LF) cortices and in 
the internal network encompassing midline precuneus/posterior cingulate 
(MP) and mesiofrontal/anterior cingulate (MF) cortices. In MCS the 
thalamus (T) and intrinsic network is impaired (MP, MF). EMCS shows 
partly impaired intrinsic network activity (MP) and LIS fully preserved 
awareness networks, with only impairment in the cerebellum (C). The 
behavioural assessment scores correlate with activity in the extrinsic 
network (LP, LF) and part of the intrinsic network (MP). 
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arousal subscores of 1, meaning that patients needed tactile or 
noxious stimulation at least once during the examination in 
order to obtain sustained eye opening (47).

EMCS patients showed a near-normal brain metabolism 
with preserved extrinsic network activity and only dysfunc-
tion of posterior cingulate cortex and adjacent retrosplenial 
cortex. This area, part of the intrinsic network, is known to 
be involved in autobiographical memory and self-reflexion 
(48, 49). Clinically, EMCS patients indeed classically experi-
ence confusion and amnesia syndromes (50, 51). Finally, our 
studied LIS patients failed to show metabolic dysfunction in 
any supratentorial brain area. Both the extrinsic and intrinsic 
network activity was preserved in LIS and only the cerebellum 
was shown to be impaired, in line with previous studies (52, 
53). Previous neuropsychological studies have indeed shown 
that classical LIS patients have no deficit in cognitive func-
tioning (54). Despite the fact that 6/8 LIS patients experienced 
basilar artery stroke and showed structural lesions on MRI in 
the ventral pontine region (encompassing the corticospinal 
and adjacent corticobulbar pathways) the resulting metabolic 
impairment was localized not in the brainstem, but in the 
cerebellum. This can be explained by the fact that PET-FDG 
functional imaging, in contrast to MRI structural imaging, does 
not show white matter structural damage (i.e. in brainstem), but 
rather the cortical metabolic consequences (i.e. in cerebellar 
hemispheres), reflecting de-afferentation. 

The observed progressive recovery of intrinsic network 
metabolic activity, as measured by FDG-PET in severely brain-
damaged patients, ranging from VS/UWS, MCS, EMCS to LIS, 
corroborates previous fMRI “resting state” studies showing a pro-
gressive recovery of functional connectivity in the “default mode 
network” in these patients (55). The latter study also identified a 
linear correlation between CRS-R total scores and functional con-
nectivity in the default mode network. We expand these findings 
here, showing an additional correlation with the extrinsic/lateral 
network metabolic activity and CRS-R total scores. 

In conclusion, the objective measurement of extrinsic/
lateral and intrinsic/midline metabolic activity in severely 
brain-injured patients following coma, permits us to better 
understand the residual external/sensory and internal/self-
awareness in disorders of consciousness. Our data show, for 
the first time, that patients with MCS, in contrast to those with 
VS/UWS, show cortical dysfunction of the intrinsic/internal 
awareness system more than of the extrinsic/external awareness 
networks. If confirmed, these findings indicate an impairment 
of a clinically barely measurable dysfunction of internal or 
self-awareness in MCS. 
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Objective: To review the applicability of heart rate variabili-
ty measures in research on severe disorder of consciousness.
Methods: The available evidence on the correlation between 
heart rate variability measures and the outcome or residual 
functional state/responsiveness of severely brain-injured pa-
tients (including those in vegetative or minimally conscious 
states) are reviewed and discussed with reference to the cen-
tral autonomic network model.
Results and conclusion: Heart rate variability analyses ap-
pear to be applicable to assess residual or emerging (higher 
level) function in brain-injured patients with disordered con-
sciousness and to predict outcome. In this regard, the central 
autonomic network model is heuristic in the understanding 
of heart rate variability descriptors of the central nervous 
system/autonomic systems relationship.
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INTRODUCTION

Subjects in a vegetative state (VS; today also referred to as 
unresponsive wakefulness syndrome) after severe brain injury 
are, by definition, disconnected from the environment, with 
no indication of awareness, voluntary or otherwise, purpose-
ful movement, or communication (1–5). Autonomic functions 
are thought to prevail on central nervous system activities. In 
contrast, research by advanced positron emission tomography 
(PET) or functional magnetic resonance imaging (fMRI) 
techniques has documented stimulus- or condition-related 
regional brain activation that reflects retained connectiv-
ity in segregated networks. These observations are deemed 
indicative of surviving sensory, emotional and “cognitive” 
modular processing at varying levels of functional complex-
ity in the absence of the integrative processes necessary to 
consciousness (5–14). The clinical scenario and perspective 
have expanded significantly, with far-reaching implications 
and requirements as to healthcare and neurorehabilitation 

of subjects in the VS. Emerging evidence suggests that the 
autonomic system can also mediate in patterns of brain acti-
vation at varying levels of complexity, and measures of heart 
rate variability (HRV) are applicable in the description of the 
brain functional organization in homeostasis and homeostatic 
response (15–18). 

METHODS
The US National Library of Medicine Database and Google Scholar 
databases were used to trace published reports on HRV, VS, minimally 
conscious state (MCS), and autonomic system/function over the pe-
riod 1993–2011, using appropriate keywords and their combinations. 
Cohort studies, case control studies, case reports and case series of 
adult or paediatric brain-injured patients were included in this review. 
Animal studies were not included.

HEART RATE VARIABILITY: MEASURES AND 
MEASUREMENTS

Measures of the HRV reportedly indicate or anticipate car-
diac disorders (19–21) and reflect the action of physiologi-
cal factors modulating the heart rhythm and its adaptation 
to changing conditions. The dynamic interplay between the 
autonomic subsystems enables efficient cardiovascular re-
sponses to endogenous/exogenous influences (22–24) and the 
efficiency of these responses can be quantified by appropriate 
data processing. 

HRV recording techniques are non-invasive and HRV signals 
(the heart tachogram, i.e. the variation over time of the interval 
between consecutive heartbeats) have excellent signal-to-noise 
ratio compared with most brain signals in use in neuroscience 
or clinical neurophysiology, but are not periodic. Stimulus- or 
condition-related changes occur within the heart rate physio
logical range of variability in the absence of cardiac disorders 
and are seldom detectable without appropriate data treatment. 
To this purpose, the tachogram needs processing in the time or 
frequency domains or by geometrical or non-linear methods, 
as suggested by the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology (25, 
26). HRV fluctuations are conventionally measured in the time 
domain by calculating indices based on statistical operations 
on RR intervals; fast Fourier transform (FFT) or autoregressive 
models (26) are of common use in analyses of frequency. The 
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HRV spectral profile is characterized by 3 main components: 
the high-frequency interval (0.15–0.5 Hz; HF), mainly associ-
ated with activation of the parasympathetic nervous system; 
the low-frequency interval (0.04–0.15 Hz; LF), reflecting 
contributions from both the parasympathetic and sympathetic 
systems; and the very-low-frequency bandwidth (< 0.04 Hz; 
VLF), thought to reflect temperature, vasomotor, hormonal, 
and metabolic regulation. The LF/HF ratio is typically used 
as a measure of the sympathovagal balance. 

HRV descriptors are also derived by non-linear methods, 
such as entropy analysis, in order to describe the complex-
ity, irregularity or randomness of HRV and its changes 
(27–30). Developments in the non-linear analysis theories 
provide new instruments of the data analysis in the entropy 
domain, such as the approximate entropy (ApEn) and the 
simple entropy (SapEn), which are thought to provide global 
information on autonomic system functioning and complex-
ity (Table I). 

HRV measures are now being regarded with increasing in-
terest as reliable descriptors of autonomic reaction to events 
with emotional resonance, and there is evidence that HRV 
can reflect the CNS/autonomic functional interaction under 
conditions involving motor, cognitive, emotional, behavioural 
or stressful tasks or adaptation to environmental change (16, 
27, 31, 32). Clinical application is mainly in the investigation 
of subjects with psychiatric disorders, traumatic brain injury 
(TBI), impaired emotion-specific processing, and personality 
or communication disorders (33–41). The (partial) independ-
ence of HRV parameters from conscious experience also 
makes application possible when the requirements for active 
collaboration need to be limited (e.g. during monitoring) 
or continuous collaboration is questionable even in simple 
experimental paradigms (e.g. in subjects with severe brain 
damage). In this respect, the approach appears to be suitable 
for privileged application in the study of subjects with severe 
disorder of consciousness, such as those in a VS or MCS. 

HEART RATE VARIABILITY AND BRAIN INJURY

Two patterns of autonomic hyperactivity have been described, 
namely a paroxysmal sympathetic hyperactivity in the absence 
of parasympathetic major contribution, and the combined 
sympathetic/parasympathetic hyperactivity (“mixed autonomic 
hyperactivity disorders”) (42). Non-neurological organ dys-
function (with paroxysmal sympathetic hyperactivity resulting 
in respiratory/cardiovascular dysfunction) seems to be associ-
ated with brain injury (43, 44) and the risk of death increases 
in patients with severe cardiac uncoupling and depressed HRV 
(45, 46). Sympathetic hyperactivity and over-responsiveness 
to afferent stimuli have been observed in a HRV study on TBI 
patients with dysautonomia (42, 47–50). A parallel increase 
in the vagal activity and intracranial pressure (possibly due 
to compression of the vagal nuclei or brainstem) has been 
documented in patients changes in the LF power (51–53). 
A significant decrease in the LF/HF ratio was observed in 
TBI children at intracranial pressure above 30 mmHg (54). 
Lowensohn et al. (55) observed a HRV decrease with rising 
intracranial pressures in subjects with severe brain injury. 
Subacute studies have shown comparable changes in the LF/
HF ratio compared with controls or a decrease in the HF power 
(56, 57) (Table II). 

HEART RATE VARIABILITY AND PREDICTION OF 
OUTCOME 

HRV has been proposed as a useful predictor of outcome in 
brain-injured patients (27, 58, 59). Reduced LF/HF ratios have 
been associated with low scores on the Glasgow Coma Scale 
and increased risk of brain death (54). A correlation between 
LF, severity of neurological dysfunction and outcome has been 
reported in TBI children (60, 61) and adults (62). The global 
HRV and parasympathetic tone were higher in TBI patients 
who later died than in those who survived; during the awak-

Table I. Heart rate variability (HRV) measures

HRV analyses Description Output variables

Time domain Statistical processing of consecutive intervals HR, SDHR, NN, SDNN, RMSDD SDNN, pNN50
Frequency distribution TINN (baseline width of the RR interval histogram), HRV triangular 

index (integral of the RR interval histogram divided by the height of the 
histogram)

Frequency domain Frequency spectrum FFT and AutoRegressive Analysis
Power: Total, ULF (< 0.003 Hz), VLF (0.003–0.04 Hz), LF (0.04–0.15 
Hz), HF (0.15–0.4 Hz), Normalized Unit (LF, HF)
Time spectrum analysis

Non-linear analyses Detrended fluctuation analysis (measures the 
correlation within the signal)

Typically the correlations are divided into short-term (α1) and long-term 
(α2) fluctuations

Poincare plot (graphical representation of the 
correlation between successive RR intervals)

SD1 (short-term variability)
SD2 (long-term variability)

Entropy Measures of the complexity or irregularity of the signal (ApEn, 
SampEn)

ApEn: approximate entropy; SampEn: sample entropy; pNN50: proportion greater than 50 ms; RMSDD: root mean square of standard deviation; SD: 
standard deviation; SDNN: standard deviation of 5 min means; HF: high frequency; ULF: ultralow frequency; VLF: very low frequency; LF: low 
frequency; FFT: fast Fourier transform; HR: heart rate.
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ing period, the global HRV and parasympathetic tone were 
lower in those patients whose neurological condition later 
worsened compared with patients with a good recovery (58, 
62–64). Attenuated parasympathetic tonus and low HF were 
found to correlate with the severity of brainstem damage, while 
very low LF and HF power was associated with progression 
towards brain death in TBI patients (65). Amelioration of the 
HRV total power in the first 3 months after TBI was correlated 
with recovery of autonomic function in a prospective study 
(56). Changes in autonomic reactivity, namely decrease in 
parasympathetic activity (normalized unit of high-frequency 
(nuHF)) and increase in sympathetic activity (normalized unit 
of low-frequency (nuLF)), were found to parallel the recovery 
of consciousness in TBI patients (66) (Table III). 

HEART RATE VARIABILITY AND RESPONSIVENESS

HRV measures are used to assess the contributions of the 
autonomic nervous system in sustaining consciousness and 
its functional re-organization during recovery in subjects 
with severe disorder of consciousness. The nuLF descriptor 
of sympathetic activity was found to increase in VS subjects 
interacting with relatives (the “mom effect”) (Fig. 1) in the 
absence of any activation in control conditions (67). Higher 
HRV and HF values were recorded in a comparable study 
(68, 69), with minor differences conceivably depending on 
different stimulus paradigms and HRV data processing (70). 
Consistent patterns of variation in HRV (e.g. in the nuLF 
values) were observed in healthy controls and TBI patients 

Table II. Heart rate variability (HRV) and brain injury

Author Subjects Results

Perkes et al., 2010 (42) 349 The core clinical features of PSH-heart rate were correlated with, blood pressure, respiratory rate, 
temperature, sweating, and motor hyperactivity.

Riordan et al., 2007 (46) 4,116 Reduced HRV was associated with an increase in mortality; beta B exposure appears associated with 
increased survival across all stratifications of cardiac uncoupling.

Riordan et al., 2009 (45) 2,178 Reduced HR multiscale entropy was significantly associated with increasing mortality and is a reliable 
predictor of mortality in TBI patients. 

Baguley et al., 2009 (50) 27 HRV measures differentiate between (TBI) subjects with normal and elevated autonomic activity. 
HRV and event-related heart rate changes help in the diagnosis of dysautonomia. The comparison of 
HRV and heart rate parameters suggested an over-responsivity to nociceptive stimuli in dysautonomic 
subjects.

Kawahara et al., 2003 (51) 42 HRV analysis showed enhanced parasympathetic activity, probably associated with increased 
intracranial pressure in patients with acute subarachnoid haemorrhage.

Mowery et al., 2008 (51) 291 Cardiac uncoupling increases with ICP, cardiac uncoupling and ICH predict mortality.
Morris et al., 2006 (53) 1,425 Reduced heart rate variability is a new biomarker reflecting the loss of command and control of the 

heart (cardiac uncoupling).
Keren et al., 2005 (56) 20 Change towards HRV normalization predicts recovery of the autonomic nervous system in patients 

with TBI.

HR: heart rate; PSH: paroxysmal sympathetic hyperactivity; TBI: traumatic brain injury; ICP: intracranial pressure; ICH intracranial hypertension.

Table III. Heart rate variability (HRV) and prediction of outcome

Author Subjects Results

King et al., 2009 (58) 75 HRV triages and discriminates the severely brain injured patients during helicopter transport better 
than routine trauma criteria or en-route pre-hospital vital signs.

Cooke et al., 2006 (59) 84 Heart period variability analyses discriminate patients with poor prognosis (death) from those 
surviving TBI.

Biswas et al., 2000 (54) 15 HRV power spectral analysis (e.g. LF/HF ratio) as a useful ancillary test in determining the severity of 
brain insult and prognosis in children with traumatic brain injury. 

Goldstein et al., 1993 (60) 11 Damaged sympathetic cardiovascular system in children with severe brain injury and complete 
interruption of the autonomic cardiovascular pathways in brain death.

Goldstein et al., 1996 (61) 36 Sequential changes in heart rate, respiratory rate, blood pressure, heart rate power spectra, and plasma 
catecholamine concentrations in patients with acute brain injury identify disruption of the autonomic 
nervous system control on heart rate proportionally to the degree of neurological insult in children 
with brain injury.

Rapenne et al., 2001 (62) 20 HRV provides useful information in the early prognosis of patients with severe brain trauma.
Norris et al., 2005 (64) 1,316 HRV independently predicts death in TBI patients and detects early differences in the mortality rate of 

groups of patients.

LF: low frequency; HF: high frequency; TBI: traumatic brain injury.

J Rehabil Med 44



498 F. Riganello et al

listening to classical music of different authorship aimed at 
evoking distinct emotional responses. The responses were 
classified as “positive” or “negative” based on the controls’ 
subjective reports; the nuLF patterns during listening differed 
from baseline and among musical samples, with a relationship 
with the music structure (71). Changes in the HRV patterns 
comparable to those observed in brain-injured subjects and in 
controls were detected in the same experimental conditions in 
subjects unambiguously diagnosed as being in a VS (72–74) 
and a relationship was observed between the HRV nuLF and 
LF peak and the occurrence of a visual pursuit response, a 
neurological marker of the subject’s evolution from the VS to 
the MCS (75–77) (Table IV).

HEART RATE VARIABILITY AND THE CENTRAL 
AUTONOMIC NETWORK 

The central control of autonomic function and the complex 
interplay between the CNS and the autonomic system and 
between the sympathetic and parasympathetic subsystems 

is modulated by direct/indirect descending, ascending and 
bidirectional connections among neural structures (24, 78, 
79). A functional integrated model (usually referred to as the 
central autonomic network, or CAN) has been proposed and 
would include cortical components (medial prefrontal, anterior 
cingulate, and insular cortex), the paraventricular, amygdala 
central and lateral hypothalamic nuclei, and structures in the 
midbrain (the periacqueductal gray region) and pons (nucleus 
of the tractus solitarius, nucleus ambiguus and ventrolateral 
medulla), with primary outputs from stellate ganglia and vagus 
nerve to the sinoatrial node of the heart (24, 31) (Fig. 2). Tel-
encephalic structures are connected with the hypothalamus and 
brainstem and contribute in the control of the autonomic or-

Table IV. Heart rate variability (HRV) and responsiveness

Author Subjects Results

Wijnen et al., 2006 (66) 16 TBI subjects Autonomic reactivity provides useful information on the severely damaged brain 
responsiveness to environmental changes.

Dolce et al., 2008 (67) 12 VS subjects HRV changes in response to a relative’s presence or voice (the “mom effect”) suggest 
residual rudimentary personal interaction in VS subjects.

Gutiérrez et al., 2010 (68) Case report Auditory stimulation induced recordable changes in HRV in VS subjects, suggesting 
residual preserved cognitive function detectable by cardiovascular descriptors.

Machado et al., 2011 (69) Case report Changes of HRV related to the emotional response to the mom’s voice (the “mom 
effect”). 

Riganello et al., 2011 (70) 12 VS subjects Modifications in the HRV (nuLF) in response to emotional stimuli (voice of relatives), 
but not to controls.

Riganello et al., 2008 (71) 16 TBI subjects
26 healthy controls

HRV described autonomic concomitants of emotional responses to complex sensory 
stimuli with emotional relevance (symphonic music).

Riganello et al., 2010 (72) 9 VS subjects
16 healthy controls

Comparable autonomic changes with emotional relevance were induced by complex 
stimuli (music) in VS subjects and controls.

Candelieri et al., 2011 (77) 7 VS subjects
8 MCS subjects

Two parameters obtained by HRV analysis (nuLF and peak of LF) proved highly 
correlated to eye-tracking.

TBI: tramatic brain injury; VS: vegetative state; nuLF: normalized unit of low-frequency.

Fig. 2. Schematic outline of the central autonomic network (adapted 
from Benarroch (92)).

Fig. 1. The “mom’s effect” in a subject in the vegetative state (VS): heart 
rate variability measures (fast Fourier transform (FFT) and auto regressive 
(AR)) in resting condition (baseline), while the subject’s mother was 
trying a personal interaction (test condition) and with an unfamilial person 
repeating the mother’s approach (control) (71). 
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ganization (24, 80). The insula (visceromotor area) is involved 
in the control of sympathetic and parasympathetic outputs 
(via a relay in the lateral hypothalamic area and through the 
amygdala) and in the autonomic and endocrine responses and 
motor activation needed to express the emotional response 
(78). The anterior cingulated cortex and its projections to the 
prefrontal cortex, amygdala, hypothalamus and brainstem are 
involved in the modulation of autonomic output in response 
to pain and emotional or behaviourally significant stimuli 
(81). The hypothalamus is thought to integrate autonomic and 
endocrine responses and to sustain vital homeostatic mecha-
nisms, such as thermoregulation, osmoregulation, response 
to stress, etc. (82). 

The CAN is essentially a dynamic system, with its activ-
ity depending on initial state (83). A functional relationship 
between HRV measures, the CAN operational status and the 
activity in the neural structures involved in affective and 
autonomic regulation has been first suggested by Thayler 
(84–86). Parasympathetic activation decreases the firing rate 
of pacemaker cells and HR, while sympathetic activity results 
in an increase of HR and firing rate of the pacemaker cells in 
the heart sinoatrial node (87). Autonomic, attentional, and af-
fective systems can be integrated in a functional model with 
the cardiac vagal tone (23, 88, 89). The autonomic nervous 
system, in general, and the CAN, in particular, are thought to 
be indexed by HRV measures. 

CONCLUSION

HRV is an output measure with potentially wide applica-
tion, but its use in neuroscience and medicine is occasion-
ally questioned (90–92). A number of autonomic functional 
tests, including plasma and urinary catecholamines, provide 
indirect information on the sympathetic or parasympathetic 
function (93), and direct measures of sympathetic activity 
have been obtained from the cardiac norepinephrine spillover 
and by microneurographic techniques or direct recording 
from skeletal muscle (94–95). However, these approaches 
are invasive and inapplicable on large subjects’ samples, and 
only indirect methods are available today to obtain informa-
tion on the parasympathetic system (96, 97). In this respect, 
HRV methodologies benefit from being non-invasive, with 
high benefit/cost ratio. HRV measures are obtained at limited 
costs, labour and accuracy of recording and information on 
the autonomic system functional condition or response, albeit 
indirect, is obtainable also when voluntary reports would be 
distracting, in the absence of the subject’s collaboration (as 
in cases of the severe disorder of consciousness), whenever 
sophisticated experimental designs and data recording pro-
cedures are impracticable (e.g. in the intensive care unit), or 
when observation needs to be non-invasive and must cause 
no discomfort (e.g. in psychiatry or in sports medicine), or 
long-term observation is necessary.

HRV remains a suitable, although indirect, tool to assess 
residual or emerging sensory/cognitive function and to predict 
outcome of subjects with severe brain injury, including subjects 

in a VS or MCS. The CAN model provides an independent 
approach in the understanding of the HRV measures as descrip-
tors of the integrated function of, and interaction between, 
the CNS and autonomic (parasympathetic and sympathetic) 
system. There is evidence of applicability in the study of severe 
disorder of consciousness.
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Objective: To update knowledge of the incidence of parox-
ysmal sympathetic hyperactivity (PSH, also referred to as 
dysautonomia), an emergency condition tentatively attribut-
ed to sympathetic paroxysms or diencephalic-hypothalamic 
disarrangement associated with severe diffuse brain axonal 
damage or hypoxia. This condition is reportedly common in 
the vegetative state, threatens survival and affects outcome. 
Methods: The results of a retrospective study on 333 subjects 
in a vegetative state admitted to a dedicated unit in 1998–
2005 are compared with a survey on patients admitted to the 
same unit in 2006–2010. 
Results and comment: In the 1998–2005 period, the incidence 
of PSH was 32% and 16% in post-traumatic and non-trau-
matic patients, respectively. It decreased to 18% and 7% in 
the 2006–2010 period. The PSH duration and the time spent 
in emergency units before admission and in the dedicated 
unit for the vegetative state after admission also decreased 
significantly. Incidence was greater among post-traumatic 
patients; its effect on outcome does not appear to have 
changed.
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INTRODUCTION

The critical association of signs such as tachycardia (> 120 
beats/min), tachypnea (> 30/min), systolic hypertension (> 160 
mmHg), hyper/hypothermia, excessive sweating, decerebra-
tion/decortication, increased muscle tone, horripilation and/
or flushing is collectively referred to as “dysautonomia” or 
“paroxysmal sympathetic hyperactivity” syndrome (PSH) (1, 
2). PSH is reportedly a common event in the vegetative state 
(VS, also referred to as “unresponsive wakefulness syndrome” 
or UWS) (3) and threatens these subjects’ survival and recov-
ery. It is tentatively attributed to sympathetic paroxysms or 
diencephalic-hypothalamic disarrangement associated with 
severe diffuse brain axonal damage or hypoxia, and, by all 
criteria, is classed as an emergency condition (1–9). 

A total of 333 subjects with severe disorder of consciousness 
following massive traumatic (n = 213; 64%) or non-traumatic 
(vascular, anoxic-hypoxic, infective or others) acute brain 
damage were retrospectively surveyed in a previous study (8). 
All patients had been referred to the S. Anna Institute – RAN 
in the years 1998–2005 for being in a VS/UWS condition (8). 
PSH occurred in 26.1% of them, with greater incidence after 
traumatic than non-traumatic brain injury (31.9% vs 15.8%). 
Outcome was worse following non-traumatic brain damage 
irrespective of PSH and worst among non-traumatic subjects 
with PSH. Occurrence of PSH and outcome were accounted for 
by the variance explained by variables (such as aetiology, age 
and sex) that are already known to be predictors of outcome for 
patients with severe disorder of consciousness, such as the VS/
UWS (10–14). However, the mathematical model correlating 
the occurrence of PSH with the subjects’ clinical characteristics 
accounted for only 40% of the overall data variance (8). In 
this respect, the study was inconclusive and the natural his-
tory of the PSH remains poorly understood. Incidence is also 
unclear due to the lack of studies on large samples and over 
time (1, 4, 5). The purpose of this paper was to compare the 
incidence of PSH in 1998–2005 with a new group of subjects 
in VS/UWS admitted to and cared for in the same institute in 
the period 2006–2010. 

PATIENTS AND METHODS
A new database of 169 patients admitted to the dedicated semi-intensive 
care unit of the S. Anna – RAN institute over a 4-year period (January 2006 
to May 2010) was compared with the subjects’ group of the first survey 
(8). Eighty-eight subjects (52%) were in a VS/UWS due to traumatic brain 
injury; non-traumatic aetiologies (major vascular insults, anoxia-hypoxia, 
etc.) were documented for 81 subjects (48%). Subjects were diagnosed at 
admission as being in a VS/UWS according to the current clinical criteria 
(11, 16–19) and established evaluation scales. The scores of subjects 
in VS/USW were lower than 25 on the Loewenstein Scale (20), lower 
than 2 on the Level of Cognitive Function scale (21), and higher than 21 
on the Disability Rating Scale (22). The revised Coma Recovery Scale 
(CRS-r) (23) global score was assessed retrospectively and found to be 
lower than 8 in all subjects. In all cases, subjects with infection, metabolic 
disorder, lung diseases affecting the cardio-respiratory function, or drug 
side-effects were excluded from the study. Outcome was defined in full 
accordance with the Glasgow Outcome Scale (GOS) (23, 24). The rank-
ing classes were: 1 = death; 2 = VS/UWS exceeding 1 year in duration; 
3 = recovery, with severe disabilities; 4 = recovery, with mild disabilities; 
and 5 = full recovery or recovery with minimal disabilities not interfering 
with everyday life (24–27). 
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With the exception of the revised Coma Recovery Scale (which was 
not in use in this country before 2007), the criteria by which patients 
have been diagnosed as being in a VS/UWS and by which PSH was 
identified were the same in the two studies, as were the monitoring, 
healthcare, pharmacological treatment (27) and rehabilitative proce-
dures and protocols in the S. Anna – RAN unit; in addition, the attend-
ing physicians were the same. The data from the 1998–2005 and the 
2006–2010 periods were compared using the exact Fisher’s test.

The study is retrospective and was approved by the local public 
healthcare ethics committee. Regulations about subjects’ privacy 
and the ethical principles of the Declaration of Helsinki (1964) of 
the World Medical Association concerning human experimentation 
were followed. 

RESULTS

The incidence of PSH was found to have decreased from the 
1998–2005 period to the 2006–2010 period, with a reduction 
from 32% to 18% and from 16% to 7% among subjects with 
post-traumatic and non-traumatic brain damage, respectively. 

Both the time spent in the emergency or intensive care units 
before admission to the S. Anna – RAN dedicated unit for 
the VS/UWS and the permanence in this unit have decreased 
irrespective of aetiology; the PSH duration decreased among 
non-traumatic subjects (Table I). Outcome did not change 
significantly (χ2, Pearson’s = 0.332, p = 0.56423), although the 
percentage of subjects with outcome in the GOS rank 1 (death) 
appears to have increased (Fisher’s exact test: p = 0.8053633) 
(Fig. 1).

DISCUSSION 

Epileptogenic mechanisms cannot be excluded a priori in all 
cases (29), but the pathophysiological processes starting and 
sustaining PSH remain a matter of speculation. Two main un-

derlying mechanism have been suggested, notably a functional 
disconnection or unbalanced activation of structures usually 
under the control of higher brain centres (30), and an excita-
tory/inhibitory ratio model of paroxysms resulting from the 
abnormal processing of and over-responsiveness to the affer-
ent stimuli from the medulla (31). A residual neuroendocrine 
reactivity is suggested by the lower incidence among anoxic-
hypoxic patients with diffuse brain damage (9); its remission 
following treatment with serotonin or GABA modulators (32, 
33) suggests hypothalamic dysregulation (34, 35). A multi-
factorial origin appears conceivable and would be consistent 
with the variability of the PSH clinical picture as to number, 
relevance, variability or development over time, and spontane-
ous or drug-mediated remission of clinical signs. 

Undetected (interactions among) factors possibly modifying 
the clinical picture or affecting its incidence may have ac-
counted for the differences observed in the two subject groups 
and are not necessarily compensated for by the group sizes. 
This caveat notwithstanding, the comparison between two 
large patient groups monitored in the same unit for a short time 
interval suggests that the incidence of PSH may be decreas-
ing, and that the condition has somehow become less severe 
and/or is better managed, at least in subjects with VS/UWS of 
non-traumatic aetiology. A more effective (although not neces-
sarily intentional) prevention and better focused treatment in 
intensive care units appears possible; improved procedures to 
reduce brain oedema and control intracranial hypertension and 
early sedation in intensive care units are possible factors that 
may help reduce the incidence of dysautonomia (36). 

Outcome does not seem to have improved in recent years, 
however. The differences between the two subject groups in 
a VS/UWS of non-traumatic aetiology suggests a higher per-
centage of subjects who died during the observation after PSH 
(i.e. with outcome to be rated as GOS 1), but in all cases death 

0

10

20

30

40

50

60

70

GLASGOW OUTCOME SCALE

SCALE 1 SCALE 2 SCALE 3 SCALE 4–5

%

POSTTRAUMATIC  VEGETATIVE STATE 
1998–2005
POSTTRAUMATIC  VEGETATIVE STATE 
2006–2010
NON-TRAUMATIC VEGETATIVE STATE 
1998–2005 
NON-TRAUMATIC VEGETATIVE STATE 
2006–2010

Fig. 1. Outcome of subjects in a vegetative state with paroxysmal 
sympathetic hyperactivity  syndrome. Comparison between the 1998–2005 
and 2006–2010 subject groups.

Table I. Incidence of paroxysmal sympathetic hyperactivity (PSH) 
syndrome in vegetative state (VS)/unresponsive wakefulness syndrome 
(UWS) following traumatic and non-traumatic brain injury. Comparison 
between the subjects admitted in the 2006–2010 period with those of the 
previous survey (1998–2005)

Traumatic brain injury
Non-traumatic brain 
injury

1998–2005 2006–2010 1998–2005 2006–2010

Subjects with PSH, % 32 18 16 7
Age, years, mean (SD) 25.0 (9) 25.5 (9) 31.0 (15) 50 (15)
Time in emergency/
intensive care units 
before admission to 
the dedicated unit for 
VS, days, mean (SD) 77.0 (71) 44.3 (26)* 74.0 (65) 

58.6 
(15)***

Time in the dedicated 
unit for VS, days, 
mean (SD) 186 (69)

164 
(104.5)** 224.0 (88) 

201 
(125)**

Duration of PSH, 
days, mean (SD) 162 (90) 70 (34) 190.0 (50) 

116 
(146)***

Fisher’s exact test vs 1998–2005. *p < 0.05, **p < 0.01, ***p < 0.001.
SD: standard deviation.
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resulted from clinical events unrelated to the pathophysiology 
of the VS/UWS or PSH. The relevance of PSH as a negative 
prognostic indicator remains confirmed; patients should be 
monitored for its occurrence and ad hoc therapeutic procedures 
should be devised.
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Objective: To explore the course and timing of functional re-
covery in patients who have emerged from coma after un-
dergoing severe traumatic brain injury. 
Methods: An observational study involving 19 patients with 
traumatic brain injury recovered from coma who under-
went holistic, intensive and multidisciplinary neurorehabili-
tation. Daily performance in each cognitive function (long-
term memory, short-term memory, orientation, calculation, 
attention, mental control, automation, and planning) was 
clinically scored and compared at admission and discharge. 
Results: The course of cognitive recovery after post-trau-
matic coma is not uniform, offering a curve with many ups, 
downs and plateaus. To achieve a good response and out-
come nearing normalcy, a patient needs over 300 h of inten-
sive rehabilitation. 
Conclusion: The consolidation of functional recovery in 
patients with traumatic brain injury requires time and ad-
equate training, and discharge is not recommended until 
cognitive improvement is established. 
Key words: cognitive functions; neuropsychological rehabilita-
tion; neurorehabilitation; traumatic brain injury.
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INTRODUCTION

Functional disorders affecting daily living activities are frequent 
in patients who emerge from coma after sustaining severe 
traumatic brain injury (TBI). These disorders usually result in 
impairment to memory, attention, reasoning, mental imagery, 
language, problem-solving abilities or executive functioning, 
as noted by León-Carrión (1), and require treatment to achieve 
functionality. Recent studies have proven the efficacy of func-
tional rehabilitation for patients who have emerged from deep 
coma. As shown by Cicerone et al. (2), there is substantial 
evidence supporting interventions for attention, memory, so-
cial communication skills, and executive functioning, and for 
comprehensive neuropsychological rehabilitation after TBI, 
designed to help the person recover maximum functionality near-
ing pre-injury level. However, the timing and duration of these 

interventions has not been established. Prigatano (3) reports that 
“cognitive rehabilitation is labor intensive. Patients must spend 
hours at cognitive remediation tasks before any notable change 
can be achieved. No matter how well-randomized or designed, 
studies that employ less than 100 hours of cognitive rehabilita-
tion will most likely be associated with minuscule results. This 
reality exists because we do not know how to deliver re-training 
activities systematically in a cost-efficient manner”. 

In the search for TBI treatment, insurance companies, 
healthcare professionals, families, and patients are concerned 
with the duration of neurorehabilitation and whether it will 
be worthwhile. Different systematic reviews, most notably 
Rohling et al.’s (4), have demonstrated that in-hospital cogni-
tive rehabilitation for patients with moderate-to-severe TBI is 
more effective than at-home rehabilitation or no rehabilitation 
post-injury. Studies by Cicerone et al. (5) and Yu (6) have also 
shown that a certain degree of spontaneous recovery occurs 
during the first few weeks, and even months, after injury. A pre-
vious study by Leon-Carrion & Machuca-Murga (7) analysed 
the course of post-TBI cognitive deficits in patients who did not 
receive neuropsychological rehabilitation, and endeavoured to 
establish the point at which cognitive deficits ceased to present 
signs of spontaneous recovery. Our study involved 28 subjects 
with severe TBI who were neuropsychologically assessed at 8 
months post-TBI and again, 19 months later. Results showed 
no significant differences between the two neuropsychological 
exams and no spontaneous recovery beyond the 8 month post-
TBI. Neurocognitive deficits consequential to TBI appeared to 
be established within the first 8 months post-trauma. 

The present study reports on the outcome of 19 adults with 
severe TBI in the post-acute phase after undergoing a holistic, 
intensive, and multidisciplinary programme in a highly special-
ized neurorehabilitation centre in Europe.

Methods

Subjects 
Nineteen patients with severe head trauma (3 female, 16 male; mean 
age 23.57 years) and a median Glasgow Coma Scale (GCS) score of 5 
(interquartile range (IQR): 4 –7) at admission. Patients were recruited 
from the Center for Brain Injury Rehabilitation (C.RE.CER) in Seville, 
Spain. No control group was used in this descriptive study. Inclusion 
criteria included emergence from coma, a GCS score of ≤ 8 within 24 h 
post-TBI, and the presence of at least 3 impaired cognitive functions 
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FG% = × 100MI – M0
10 – M0

Table I. Patient demographic data: age, Glasgow Coma Score (GCS) 
score within 24-h post-traumatic brain injury (TBI) and time from injury 
to programme admission

Patient data
n = 19 Mean (SD) Median (IQR)

Age 23.57 (7.04) 23 (19–28)
GCS Score 5.37 (1.89) 5 (4–7)
Time from injury to programme 
admission, months

23.94 (58.62) 11 (4–17)

GCS: Glasgow Coma Scale; SD: standard deviation; IQR: interquartile 
range.

Table II. Classification for Center for Brain Injury Rehabilitation Clinical 
Outcome Scale (CRECERCOS). The first column shows CRECERCOS 
scores; the second indicates percentage of cognitive functionality compared 
with pre-morbid levels of normalcy; the third shows level of impairment 
associated with each score

CRECERCOS 
score

Impairment 
score, % Specific function/s

1–2 10–20 Severe impairment (almost no 
response) in a specific function

3–4 30–40 Impaired, inconsistent response
5–6 50–60 Consistent response
7 70 Good response
8–9 80–90 Near normal response in quantity 

and quality, but not pre-morbid level
10 100 Previous functioning level

(deterioration of mental process involving symbolic operations, such 
as orientation, memory, attention, mental control, automation, and 
planning). All patients began the neurorehabilitation programme ap-
proximately 24 months post-injury. Patients’ mean GCS score, mean 
time from brain injury to programme admission and demographic data 
are shown in Table I.

Treatment programme
Patients enrolled in a holistic, intensive and multidisciplinary reha-
bilitation programme at Center for Brain Injury Rehabilitation (7–11). 
Patients underwent daily 4-h rehabilitation, 4 days a week, for 6 
months. Each rehabilitation session lasted 60 min, and was given 
by a specialized therapist (neuropsychologist, physical therapist, 
speech therapist, or occupational therapist) in accordance with 
the patient’s needs. In general, patients received a combination 
of these rehabilitation sessions, which were specifically tailored 
to meet the physical, emotional, behavioural and cognitive needs 
of each patient, and could include pharmacological treatment, as 
reflected in previous studies by León-Carrión (1, 12, 13). Cognitive 
rehabilitation included exercises in orientation, memory, attention 
mechanisms (automation and mental control), calculation, planning 
and executive functioning (14) (Appendix I).

Outcome scoring system 
Each cognitive function was clinically scored on a scale from 1 to 10 
by the therapist who conducted the session. Baselines for cognitive 
functions were obtained at admission, using the CRECER Clinical 
Outcome Scale (CRECERCOS) and neuropsychological assessments 
prior to rehabilitation (Table II). Patients received a score of normalcy 
when performance achieved pre-morbid levels of functioning. This 
normalcy was clinically established through interviews with the 
patients’ families and closest associates. A score of 1–2 was assigned 
to subjects with severe impairment (almost no response) in a specific 
function (10–20% normalcy); 3–4 indicated impaired, although in-
consistent, response (30–40% normalcy); 5–6 showed consistent, but 
scarce, response (60% normalcy); 7 indicated a good response, but too 
scarce to be considered at normal level (70% normalcy); 8–9 reflected 
near normal response in quantity and quality, but not at pre-morbid 
levels (80–90% normalcy). A score of 10 was assigned when patient 
performance showed either his/her previous level of functioning 
(100%) or statistical normalcy. 

Statistical and data analysis
The following analyses were carried out: comparison of initial scores 
with scores after discharge; mean number of sessions completed for 
each cognitive function; percentage of functional gain obtained after 
rehabilitation, and percentage of functionality at discharge compared 
with admission. The percentage of functional gain is calculated from 
the CRECERCOS baseline at admission and the final level of func-
tionality obtained after neurorehabilitation, with a maximum score 
of 10. For example, a patient with a 6 on the CRECERCOS scale has 
a potential gain of 4 points to achieve the maximum score of 10. If 
the functional gain of this patient after treatment is 2 points, his/her 

percentage of functional gain is 50% (half of the potential 4 points). 
The equation used to determine the latter is as follows:

Ml is the score obtained by the patient in the last month of rehabili-
tation. M0 represents the patient’s score at admission. FG% is the 
percentage of functional gain for each specific function obtained in the 
final assessment. Statistical analyses were performed using SPSS 15.0 
software for Windows, with alpha set at 0.05 for all tests. Fisher’s exact 
test was applied to analyse categorical variables. Given the asymmetri-
cal distribution of most of the variables, non-parametric analyses were 
performed. Means, standard deviations, medians and interquartiles are 
displayed in Tables I, III, IV and V. We applied the Mann-Whitney U 
tests to analyse independent samples and the Wilcoxon test for related 
samples. Correlation analysis was carried out using the Spearman’s 
rank order correlation (rho). We used mean values and standard de-
viations (SD) to summarize our results due to their higher illustrative 
capacity for presenting and comparing our data. 

Results

CRECERCOS score analyses
Table III displays patients’ mean scores on the CRECERCOS 
scale at admission and discharge from the neurorehabilitation 
programme. At admission, the group mean for the different 
cognitive functions was 4.59. The lowest mean scores were for 
automation and short-term memory, while orientation received 
the highest score. At discharge, the group mean for all areas 
increased to 7.52, with calculation scoring the lowest, and 
orientation the highest mean score. 

Functional gain increased in all areas. The global mean score 
reached 56.24%, with patients achieving the highest gains in orien-
tation and automation and the least gain in calculation and mental 
control. Comparative analysis between areas showed the most 
significant gain in orientation, particularly compared with calcula-
tion and mental control (p < 0.01). Significant differences were also 
found between short-term memory and calculation (Table III).

Statistical comparisons were carried out between number 
of rehabilitation sessions and cognitive function. Table IV 
illustrates the number of sessions (60 min per session) which 
patients underwent during the rehabilitation programme. The 
mean number of sessions was 43. Planning received the most 
rehabilitation sessions, whereas mental control received the 
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Table IV. Number of sessions, time elapsed from brain injury to rehabilitation programme admission and functional gain (FG)

Cognitive functions 

Mann-Whitney U test
Number of sessions 
Differences between 
cognitive functions

Spearman correlation (rho)
Sessions, n Correlation FG%–number of 

sessions
Correlation FG%–time from 
injury to programme admissionMean (SD) Median (IQR)

Long-term memory 46.53 (26.44) 54 (23–70) f** –0.08 –0.63**
Short-term memory 50.16 (23.63) 58 (43–70) d** 0.03 –0.29
Orientation 55.67 (31.05) 53 (22–88) d*, f** –0.48 –0.55
Calculation 28.29 (27.65) 14.5 (4–53.5) b**, c*, h** 0.36 –0.13
Attention 37 (32.89) 25.5 (7.25–72) 0.38 –0.25
Mental control 23 (18.62) 13.5 (10.25–40.5) a**, c**, h** 0.26 0.09
Automation 42.2 (33.97) 43 (5.75–76.5) 0.2 –0.16
Planning 69 (42.39) 53.5 (41.75–83.75) d**, f** 0.63** –0.62**

a: significant differences for long-term memory; b: significant differences for short-term memory; c: significant differences for orientation; d: significant 
differences for calculation; e: significant differences for attention; f: significant differences for mental control; g: Significant differences for automation; 
h: significant differences for planning. 
*p < 0.05; **p < 0.01. 
IQR: interquartile range: SD: standard deviation.

least. The comparative study between cognitive functions 
showed significant differences between calculation and the 
following: short-term memory (p < 0.01), orientation (p < 0.05), 
and planning (p < 0.01). Significant differences were also found 
between number of sessions for mental control compared 
with long-term memory, orientation, and planning (p < 0.01). 
Correlation analysis between functional gain and number of 
sessions was also performed for each cognitive function (see 
Table IV). Only planning showed a linear correlation between 
the two variables, as more sessions associated with greater 
functional gain (rho = 0.63, p < 0.01).

Correlation analysis between patients’ total functional gain 
and time from injury to programme admission was carried out 
for each cognitive function. The analysis revealed significant 
negative correlations between these variables for long-term 
memory (rho = –0.63) and planning (rho =  –0.62). No other 
functions correlated with the time from injury to programme 
admission (Table IV).

To determine whether the initial state of a patient affected 
his/her subsequent rehabilitation, we relied on the GCS score 
at time of injury. We were able to obtain this information for 
16 of the 19 patients in our study. All scores fell below 8 on 

Table III. Classification for Center for Brain Injury Rehabilitation Clinical Outcome Scale (CRECERCOS) scores at admission and discharge, and 
overall functional gain

Cognitive 
functions n

CRECERCOS at admission CRECERCOS at discharge FG%

CRECERCOS 
Differences 
admission–
discharge 
Wilcoxon 
(Z value)

FG% 
Differences 
between cognitive 
functions
Mann-Whitney 
U test

Mean 
(SD) Median (IQR)

Mean
 (SD)

Median 
(IQR)

Mean 
(SD)

Median
(IQR)

Long-term 
memory

19 4.27 
(1.68)

4 
(3–6)

7.7 
(1.44)

8 
6.75–8.625)

57.26 
(24.4)

56.47 
(33.33–72.32)

–3.73** c*

Short-term 
memory

19 3.86 
(1.97)

4 (
2–5.5)

7.4 
(61.16)

7.5
(7–8)

56.69 
(18.03)

55.55 
(47.77–71.4)

–3.82** c*, d*

Orientation 15 7.45 
(3.15)

8.5 
(6.1–10)

9.47 
(1.46)

10 
(9.875–10)

88.33
(20.61)

100 
(77.5–100)

–2.66** a*, b*, d**, e*, 
f**, h*

Calculation 14 4.3 
(1.77)

4.5 
(3.75–5.35)

6.87 
(1.61)

7 
(7–7.75)

43.32 
(20.06)

40 
(31.78-58.33)

–3.18** b*, c**

Attention 8 4.58 
(1.60)

5 
(4.12–5.8)

7 
(1.64)

7 
(5.75–7.87)

46.3
(25.69)

44.44
(26.25–56.25)

–2.52* c*

Mental control 16 4.53 
(1.73)

4.5 
(4–6)

7.03 
(1.71)

7.5
(6.12–8)

44.6 
(30.54)

50 
(22.72–66.66)

–3.24** c**

Automation 8 3.28 
(2.27)

4.5 
(1–5)

7.28 
(2.15)

7 
(6–10)

60.43 
(33.79)

66.66 
(25–100)

–2.37*

Planning 18 4.34 
(1.46)

4.3 
(3–5.5)

7.41 
(1.43)

7.5 
(7–8)

53.05 
(24.76)

53.84 (37.5–
72.5)

–3.77** c*

a: significant differences for long-term memory; b: significant differences for short-term memory; c: significant differences for orientation; d: significant 
differences for calculation; e: significant differences for attention; f: significant differences for mental control; g: Significant differences for automation; 
h: significant differences for planning. 
*p < 0.05; **p < 0.01. 
SD: standard deviation; FG: functional gain; IQR: interquartile range. 
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Table V. Between-group comparison of lowest and highest GCS scores

Patient demographic data

Low GCS score (n = 7) High GCS score (n = 9)

Between-group 
differences 
Mann-Whitney U test 
(z score)Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Gender (M/F) 5/2 8/1 0.55a

Age, years 21.57 (4.81) 22(19–23) 22.89 (8.27) 25(16.5–28) –0.48
GCS score 3.57 (0.53) 4 (3–4) 7.22 (1.92) 7 (5.5–8) –3.38**
Time from injury to programme 
admission (months)

10.85 (8.39) 15 (1–16) 39 (84.72) 11 (3.5–21.5) –0.42

Cognitive functions
(nlow GCS/nhigh GCS)

Functional gain % Between-group 
differences 
Mann-Whitney U test 
(z score)

Low GCS score (n = 7) High GCS score (n = 9)

Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Long-term memory
(7/9)

60.9 (27.80) 62.5 (33.3–85.07) 50.47 (19.68) 50 (29.16–69.04) –0.79

Short-term memory
(7/9)

58.78 (16.11) 58.33 (50–64.28) 58.52 (12.72) 55.55 (48.88–72.38) –0.05

Orientation
(4/4)

88.75 (13.14) 90 (76.25–100) 85 (30) 100 (55–100) –0.33

Calculation
(6/6)

47.45 (25.13) 50.86 (25.45–64.58) 35.79 (12.77) 36.92 (28.57–43.33) –0.96

Attention
(2/5)

54.16 (5.89) 54.1 (50–58.33) 42.41 (33.06) 30 (21.59–69.4) –1.16

Mental control
(6/8)

28.40 (28.94) 38.18 (–3.57 to 50.08) 59.56 (23.78) 58.33 (50–72.9) –2.02*

Automation
(5/2)

49.60 (33.49) 36.36 (22.5–83.33) 87.5 (17.67) 87.5 (75–100) –1.37

Planning
(7/9)

44.53 (33.30) 45.94 (33.33–75) 60.23 (14.24) 62.5 (49.65–69.58) –1

aFisher’s exact test.
*p <  0.05; **p < 0.01.
GCS: Glasgow Coma Scale; SD: standard deviation; IQR: interquartile range; M: male; F: female.

the GCS. We divided these patients into two groups: the low 
GCS group (n = 7), with scores ≤ 4, and the high GCS group 
(n = 9), with scores > 4. As shown in Table V, both groups 
had similar distributions of gender and age (p > 0.05), as 
well as time from injury to programme admission (p > 0.05). 
However, mean GCS scores between the two groups (3.57 
for low GCS and 7.22 for high GCS) did show significant 
differences (p < 0.01). 

Table V displays the percentage of functional gain obtained 
by both GCS groups in each cognitive function throughout 
the rehabilitation programme. The low GCS group showed 
a mean functional gain of 53.09%, whereas the high GCS 
group mean reached 61.74%. The highest functional gain for 
both groups was in orientation. The lowest gain was found in 
mental control in the low GCS group and in calculation in 
the high GCS group. We also compared the mean functional 
gain of each group in these cognitive functions, as shown 
in Table V. Significant differences were found in mental 
control (p < 0.05), with the highest gain shown by the high 
GCS group.

Discussion

The main results of this study may be summed up as follows. 
Firstly, percentage of functional gain in all cognitive areas did 

not differ between low and high GCS score groups, with the 
exception of mental control. Secondly, cognitive functions 
improved significantly from rehabilitation admission to dis-
charge. Thirdly, functional gain was related to the number of 
sessions the patient underwent during the course of rehabilita-
tion. Fourthly, not all cognitive functions required the same 
number of sessions to recover statistic or clinical normalcy. 
Finally, total functional gain and time from injury to cognitive 
rehabilitation showed an inverse relationship between long-
term memory and planning. 

The first aim of this study was to ascertain whether the sever-
ity of the lesion at admission determined the severity of the 
cognitive sequelae observed as a consequence of the physical 
damage to the brain. To determine the severity of the lesion, 
we used the patient’s worst GCS score during the first 24 h 
post-injury. The GCS score, since its introduction, has been 
considered one of the most important predictors of outcome 
after head injury, although different studies have demonstrated 
that a correlation does not always exist after brain trauma (15). 
Our results showed a partial correlation between severity of 
lesion (GCS) at admission and patients’ cognitive functional 
gain. This correlation was only found in mental control. Our 
data did indicate that patients scoring higher within the GCS 
5–8 range tended to achieve higher functional gain than those 
with lower scores, although a comparison of mean functional 
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gain between groups in each cognitive function only showed 
significant differences in mental control. As a cognitive func-
tion, mental control is related to the part of executive function-
ing that engages and directs different mental activities (16). 
This function is directly related to an individual’s capacity to 
be independent (17).

Our CRECERCOS analysis of scores at rehabilitation ad-
mission (4.59) and discharge (7.52) found significant differ-
ences between number of treatment sessions and the patient’s 
cognitive functional gain. This functional gain is observed in 
all cognitive areas, with a global mean of 56.24%. Our results 
support those of other authors, who maintain that the period of 
cognitive rehabilitation may vary (18).The course of cognitive 
recovery after post-traumatic coma is irregular, with many ups, 
downs, and plateaus. Our results indicate that, to achieve a 
good response and outcome nearing normalcy, a patient needs 
over 300 h of intensive rehabilitation. This data supports and 
validates Prigatano’s (3) earlier statement that the effects of 
cognitive rehabilitation are not observed in patients with TBI 
who receive less than 100 hours of treatment. Our data is also 
in accordance with Cicerone et al. (2), whose comprehensive 
review of the empirical literature on cognitive rehabilitation 
found evidence supporting this treatment and its advantages 
over conventional forms of rehabilitation. 

It is important to note that patient scores increased and de-
creased throughout the treatment period. Progress during any 
rehabilitation programme, whether it is physical or cognitive, 
is not uniform. In our study, each cognitive function required 
a mean of 43 training sessions, with planning requiring the 
most (69), and mental control the fewest (23). Our results 
also indicate that not all cognitive functions require the same 
number of sessions to recover statistic normalcy. For example, 
long-term memory, orientation and planning differed in terms 
of time and effort needed to achieve recovery. 

In a previous study, we found that consolidation after an ini-
tial gain required more rehabilitation time. Each achievement 
must be consolidated, and this takes time and repetition, which 
is reported to have significant physiological effects on learning 
and working memory (19). In clinical practice, we have observed 
that if the patient is discharged as soon as s/he obtains a score 
of 7 or 8, the possibility of a drop or regression persists. Time 
is also required for structural and functional reorganization 
in the brain. Training cannot be given all at once, although it 
should be consistent and progressive. Hence, we recommend 
that this rehabilitation period be scheduled as 4-h daily sessions, 
4 days a week. Treatment should not be abandoned if for a short 
period of time the patient does not show improvement, or if 
s/he regresses somewhat. Nonetheless, if regression or stalls 
persist, their causes should be sought before continuing with 
the rehabilitation programme. Our results indicate that not all 
cognitive functions require the same type of treatment; some are 
more costly to recovery in terms of time and effort. 

Another finding is of particular relevance to the planning 
and timing of TBI rehabilitation. We found that the sooner 
patients receive treatment after injury, the better their cogni-
tive outcome, especially in long-term memory and planning. 

However, this treatment requires time, especially to consolidate 
recovery. Memory is a time-dependent process, as shown by 
McGaugh & James (20). Furthermore, the duration of post-
traumatic memory problems, such as amnesia, has traditionally 
been a better predictor of cognitive outcome than admission 
GCS score, as shown by Miller et al. (21).

In conclusion, the rehabilitation of cognitive deficits in 
TBI patients who have emerged from deep coma is advisable 
when a holistic, intensive and multidisciplinary programme is 
applied. However, the course of cognitive recovery after TBI 
is not uniform, and depends on which cognitive functions are 
impaired, and on the severity of this impairment. Successful 
treatment of these deficits varies in terms of time and effort. The 
number of sessions needed to rehabilitate impaired cognitive 
functions differs from function to function. For example, our 
results showed that planning and memory require the highest 
number of rehabilitation sessions to achieve near normalcy. 
We should also note that cognitive functions are interrelated, 
and their rehabilitation must be structured to maximize out-
come. Furthermore, the consolidation of cognitive gain also 
requires time, proper training, and well-programmed therapy. 
We suggest that patient discharge should occur only after 
cognitive improvements are consolidated. This study provides 
an approximation of recovery time after TBI. More studies, 
involving different technology and theoretical bases, could 
help expand our knowledge of effective post-TBI cognitive 
rehabilitation.
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Appendix I. The Center for Brain Injury Rehabilitation integral, intensive and multidisciplinary model of rehabilitation for people with acquired 
brain injury

Interdisciplinary holistic and intensive programmes 
- involve brain damage specialists from different fields: neuropsychologists, speech therapists, neurologists, psychiatrists, neurosurgeons, physical 
therapists, etc.
- ecologically-valid
- divided into synchronized phases (aims, methods and professionals)
use quantitative and qualitative methods
each deficit is allotted the necessary time and dedication to provide best possible outcome
Basic operational requirements:
- rehabilitation treatment designed by specialized personnel, adapted to patient’s needs
patient/specialist – at least one professional per three patients
- adequate installations, apparatus and rehabilitation techniques for efficient treatment
Multidisciplinary Programme Structure:
Neuropsychological Rehabilitation
- based on neurological evaluation of patient’s cognitive capacities and emotional state 
- outcome goals based on clinical and statistic results of this evaluation 
- main goal: patients attains maximum degree of functional independence
- treatment sessions include individual (and family) psychotherapy – rehabilitation may continue when patient goes home

Speech rehabilitation
fluidity, auditory comprehension, denomination, reading, writing, repeating, automatic mechanisms, comprehension of written language and 
presence of paraphasic errors: 
- fluency tasks: articulatory agility, length of phrases, verbal agility, etc. 
- auditory tasks: differentiating, identifying/obeying orders
- denomination tasks: visual confrontation, free association, etc. 
- deficits appearing in reading/writing process are re-taught

Physical rehabilitation
spasticity, posture control, balance, trembling, emotional reactivity
we use NeuroBird system of computerized muscular training as well as other physiotherapy techniques (e.g. Bobath) 

Occupational therapy/functional therapy
focus on patient’s environment, his/her interests and motivation, culture, values, beliefs and the role the patient plays in his/her surroundings

Efficiency of treatment
CRECER programmes undergo daily evaluation and progress control
- neurofunctional state of patient
- efficacy of methods applied

J Rehabil Med 44
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The operational model and strategies designed for use in the 
S. Anna – Research in Advanced Neurorehabilitation Insti-
tute for the care and neurorehabilitation of subjects in the 
vegetative or minimally conscious states are described here. 
A total of 722 patients were admitted, cared for and dis-
charged from the institute in the period 1998–2009. Applica-
tion of the model approach has progressively shortened the 
time of hospitalization and rehabilitation and reduced costs.
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INTRODUCTION

The S. Anna Institute – Research in Advanced Neurorehabilita-
tion (RAN) for the care and neurorehabilitation of subjects with 
acquired severe brain damage and disorder of consciousness has 
been operative in Crotone, Italy, since 1998. The institute aims to 
meet the needs of a local population of 3–4 million; to date it has 
admitted, treated and discharged a total of 722 subjects. In the 
process, dedicated units have been designed and set up to care for 
subjects with different clinical conditions and at different stages 
of evolution after brain injury. The functional organization and 
care and neurorehabilitation procedures in each unit have been 
designed to respond to the subjects’ needs, particularly for those 
patients who cannot be discharged or treated at home, who need 
long-term hospitalization. The aim of continuous reorganization 
since 1998 was to achieve a progressive, cost-efficient reduction 
in the length of hospitalization in the semi-intensive units for 
acute patients and in the duration of the rehabilitation protocols, 
and to help improve outcomes. The objective of this paper is to 
describe the model and the strategies designed to operate it.

PATIENTS AND DIAGNOSIS

Subjects with severe acquired brain damage and disorder of 
consciousness are routinely admitted to the institute upon 

referral from intensive care or neurology/neurosurgery units. 
There are no pre-determined admission criteria, other than 
autonomous breathing, stability of vital parameters, and ab-
sence of indications for further (neuro)surgery. Patients are 
classified as being in a vegetative state (VS; also referred to 
as unresponsive wakefulness syndrome (UWS)) by the cur-
rent clinical criteria and applicable scales; evolution into a 
minimally conscious state (MCS)1 (1–6) is diagnosed when 
reproducible or sustained behavioural patterns associated with 
evidence of awareness of self or environment are observed 
(7–11). Outcome is conventionally assessed with the Glasgow 
Outcome Scale (GOS) (12, 13) despite occasional ambiguities 
in this scale in the classification of VS or MCS (14, 15).

A total of 722 patients were admitted in the period 1998–
2009. Of these, 503 were diagnosed as being in VS/UWS 
according to the current criteria; demographics, aetiology and 
outcome are summarized in Table I. At admission approxi-
mately 25% of referred subjects (n = 219; 30.3%) featured some 
consistent, although not constant, behavioural responses com-
patible with the diagnostic criteria for the atypical VS or MCS. 
The percentage is consistent with the reported misdiagnosis 
between the VS and MCS (up to 25–40%) (16, 17); however, 
the continuous interaction between the S. Anna Institute and 
the staff of intensive care or neurology/neurosurgery units in 
the area appears to be incompatible with such a percentage of 
error. These subjects’ demographics, aetiology and outcome 
are summarized in Table I and compared with the subjects in 
VS/UWS at admission in order to infer about evolution and 
outcome.

1The MCS (8–10) was not defined until 2002 and the revised Coma 
Recovery Scale (7) was not in use in Italy before 2008 (18). Subjects 
admitted to the S. Anna–RAN in 1998–2002 were initially diagnosed as 
being in a VS with (“atypical” VS) or without any consistent behavioural 
responsiveness; in this regard, the Aspen Neuro-behavioral Conference 
Workgroup guidelines (9, 10) were informally followed. The clinical records 
have been revised for the present study and the diagnosis of VS and MCS 
reformulated according to these guidelines, but this re-classification did 
not change the perspective of the study. The VS is currently also referred 
to as UWS (19); this label is intended to help characterize a condition 
with somehow unclear boundaries, that shares aetiology and underlying 
pathophysiology with the MCS, but differs as to prognosis, medical, legal, 
or popular perception of the bioethical issues (20), allocated resources, 
healthcare policies, etc.

Included in the special issue: 
CONSCIOUSNESS AND THE VEGETATIVE STATE: TODAY 
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INSTITUTE STRUCTURE AND ORGANIZATION

The institute units were designed and sequentially organized 
in compliance with the country regulation, and in order to 
guarantee clinical care and neurorehabilitation programmes 
that meet patient’s individual pathophysiological conditions, 
evolution during rehabilitation, and needs.

Operative units
The following units are operative: a 10-bed (2 rooms with 6 
and 4 beds, respectively) semi-intensive care unit, also termed 
the “Awaking Unit” (Semi-Intensive Care Unit for the severe 
disorder of consciousness, Fig. 1), is dedicated to subjects 
with severe disorder of consciousness who meet the criteria for 
diagnosis of VS/UWS in the acute phase at admission. Three 
dedicated physicians, 5 therapists and nurses rotate to provide 

a total of 10 h’ assistance per day. Temperature and humidity 
are kept constant and sterile air is circulated (8 times/h). All 
beds can be moved to upright positions to promote the patients’ 
adaptation to a vertical position and to help recover autonomic 
balance. The staff schedule and rotation guarantee an overall 
level of 8-h/day/patient medical, nursing and neurorehabili-
tation assistance. Each patient is monitored by conventional 
procedures. All subjects undergo a 3 h/day minimum neu-
rorehabilitation, compatible with their clinical condition and 
stability. The protocols for neurorehabilitation are purported to: 
(i) favour the recuperation of circadian rhythms by providing 
changes in illumination; start feeding with regular timing as 
early as possible; schedule all activities during the 24-h period; 
(ii) minimize all problems due to bedding; and (iii) transfer 
the subject from bed to wheelchair; adapt the subject to an 
upright position; and start the procedures or assisted mobili-
zation as soon as possible. All subjects are treated regularly 
in a swimming pool at 38ºC to help counterbalance spasticity 
and provide the muscle relaxation needed for all rehabilitative 
procedures to be carried out. The neurorehabilitation protocols 
include assisted passive mobilization, postural positioning, 
orthoses, relaxation, stimulation of buccal mucosa, single 
and group mirror excercises, assisted drawing (Fig. 2a), train-
ing in swallowing, training in breathing (clapping, assisted 
coughing), inhibition of pathological postures, hydrotherapy, 
automatic walking (Fig. 2b), protocols to withdraw the tra-
cheal cannula, etc. Uni- or multi-modal sensory stimulations 
are presented regularly to help provide communication with 
the environment. 

In the framework of the MIMERICA2 project, an ambient 
intelligence platform combining traditional and innovative sen-

 

EMERGENCY and NEUROSURGERY INTENSIVE CARE UNITS 

S. ANNA INSTITUTE–RAN (91 beds in total) 
  
  
  

SEMI-INTENSIVE CARE 
UNIT for DOCS (10 beds) 

REHABILITATION UNIT for SEVERE 
BRAIN INJURY (20 beds) 

  

DEDICATED UNIT 
FOR LONG-TERM 

CARE  
(36 beds) 

  

INTEGRATED 
BEHAVIOURAL-

COGNITIVE 
REHABILITATION UNIT 

(10 beds) 
  

UNIT for NEURO-
REHABILITATION  

(15 beds) 
  

DAY-HOSPITAL MONITORING in REMOTE at HOME 
or 

DISCHARGE  

Fig. 1. S. Anna–RAN model for the care and neurorehabilitation of 
subjects with severe acquired brain damage and disorder of consciousness. 
RAN: Research in Advanced Neurorehabilitation; DOC: severe disorder 
of consciousness.

Table I. Demographics and outcome of 503 subjects diagnosed and 219 not diagnosed as being in a vegetative state (VS) at admission. The length 
of time in the intensive care units before admission and in the dedicated semi-intensive care units for VS are shown. The Glasgow Outcome Scale 
(GOS) ranking classes were: 1 = death; 2 = VS exceeding 1 year in duration; 3 = recovery, with severe disabilities; 4 = recovery, with mild 
disabilities; and 5 = full recovery or recovery with minimal disabilities not interfering with everyday life (12, 13)

Subjects n (%)
Age, years
Mean (SD) 

Time in intensive care unit 
before admission, days 
Mean (SD)

Time in the semi-intensive care 
unit for VS, days
Mean (SD)

GOS rating at 
discharge, %

1 2 3 4 5

Diagnosed (n = 503)
All patients 503 39 (15) 58 (45) 154 (117) 17 16 23 24 20
Post-traumatic 302 (60) 29 (14) 50 (47) 140 (118) 5 16 20 29 29
Vascular 160 (32) 56 (15) 56 (39) 144 (113) 34 15 31 18 4
Anoxic-hypoxic 37 (7) 45 (19) 63 (53) 174 (127) 45 21 18 9 6
Others 4 (1) 59 (12) 34 (16) 63 (33)

Not diagnosed (n = 219)
All patients 219 44 (19) 37 (20) 74 (72) 5 3 16 30 46
Post-traumatic 120 (55) 39 (21) 39 (22) 72 (61) 5 3 14 19 59
Vascular 81 (37) 49 (18) 36 (19) 81 (55) 4 4 20 44 28
Anoxic-hypoxic 5 (2) 36 (12) 40 (24) 46 (42) 0 0 50 25 25
Others 13 (6) 56 (16) 24 (20) 61 (46) 25 0 0 50 25

SD: standard deviation; GOS: Glasgow Outcome Scale.

2The project and development of MIMERICA were supported by the 
Italian Ministry of University and Research with dedicated funds for 
competitive pre-industrial research (2004–2007). 
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sors for the ambient (temperature and humidity, oxygen, light/
dark cycles, noise, etc.) and the relevant functional parameters 
(body temperature, heart rate and systolic/diastolic blood pres-
sure, breathing, oxygen saturation level, spontaneous move-
ments, voicing, eye movements and blinking, and heart rate 
variability) of a sub-sample of subjects has been implemented 
for monitoring. Ambient intelligence collectively indicates 
pervasive and non-invasive hardware/software infrastructures 
allowing two-way human interaction with, and full control of, 
the environment at varying levels of functional complexity. 
Research into the effects of spontaneous or environment-
induced changes in non-neural factors on brain function (e.g. 
responsiveness) or evolution is in progress. To this end, the 
platform architecture is interfaced for compatibility and in-
terplay with advanced tools for knowledge management and 
knowledge discovery, processing data to infer new knowledge 
and potentiate intelligent processing through intensive and 
iterative processes (21–23).

Subjects emerging from the VS/UWS and recovering into 
a MCS clinical condition (7–9) are transferred to the 20-bed 
unit dedicated to the patients with acquired severe brain injury 
(brain injury care in Fig. 1). In this unit, monitoring is limited to 
the vital parameters, depending on the patient’s clinical needs; 
and assistance is provided for a total of 7 h/day/patient. Subjects 
are treated with standard motor, speech therapy and cognitive 
rehabilitation procedures, depending on the disabilities ob-
served when consciousness is (partially) recovered.

A 36-bed unit is dedicated to the long-term care of patients who 
have not evolved from a VS/UWS or MCS and are unsuitable 
for discharge or homecare (long-term care in Fig. 1). Transfer 
to this unit is made at a time after brain injury that depends on 
aetiology: 12 months for post-traumatic subjects, 6 for those 
with major vascular injury and 3 for those who have had mas-
sive anoxia-hypoxia. Full nursing and medical assistance, proper 
feeding/hydration, adaptation to a wheelchair, and passive motor 
treatments are guaranteed and the possible evolution towards 
a (partial) recovery of consciousness is monitored by ad hoc 
protocols. When practicable, the family is trained to be able to 
take care of the subject at home for limited periods of time, with 
the aim of re-adjusting the patient to the home environment. Fol-
lowing an increase in the number of beds in this unit from 16 to 

36, the turnover along the institute units increased significantly 
(black vertical bar in Fig. 3) (χ2 = 3.679, p = 0.05).

Subjects further evolving from a MCS and (partly) recover-
ing consciousness with residual cognitive impairment and/or 
behavioural disorders that are incompatible with discharge 
or untreatable at home are transferred to the 10-bed inte-
grated unit for cognitive-behavioural rehabilitation, with 
appropriate nursing and psychological support and cognitive 
rehabilitation. 

Subjects (partially) recovering consciousness with residual 
major motor disabilities are transferred to the 15-bed unit for 
motor functional rehabilitation and trained to adjust to future, 
fully-monitored, remote treatment, at home.

This re-organization has progressively reduced the length of 
hospitalization in the semi-intensive unit for subjects with VS/
UWS and has increased the turnover rate, therefore combining 
an optimal utilization of the institute facilities with the fulfil-
ment of each patient’s needs (Fig. 3).

Work to extend healthcare and neurorehabilitation to patients 
at home under remote control is in progress. To this end, col-
laboration between the S. Anna – RAN and the local govern-
ment and healthcare organization (the Oberon project) has been 

Fig. 2. Examples of rehabilitation treatment of patient with disorder of consciousness in S. Anna Institute–Research in Advanced Neurorehabilitation. 
(A) Assisted drawing. (B) Automatic walking.  

(A) (B)

Fig. 3. Mean length of hospitalization (days) in intensive care or neurology/
neurosurgery units of local hospitals and in the Institute S. Anna–Research 
in Advanced Neurorehabilitation dedicated units. Note how the increased 
number of patients in institute acute and the long-term units has contributed 
to reducing hospitalization in local hospitals. The turnover between units 
increased significantly after increasing the number of available beds in 
the long-term unit (black vertical bar) (χ2  = 3.679, p = 0.05). 
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established, in order to develop and test the potentialities of 
remote monitoring and homecare of 54 subjects in a persistent 
VS/UWS or MCS over a 3-year period. 

EARLY RECOVERY AND OVERALL OUTCOME

The evolution from VS/UWS to MCS to recovery and the 
overall outcome were studied retrospectively by referring to 
two established major descriptors, namely the GOS (12–13) 
and the re-appearance of a visual pursuit response (24, 25). 
In general (and in agreement with previous evidence), post-
traumatic patients had better outcomes than vascular patients, 
and anoxic-hypoxic subjects had the worst outcome irrespec-
tive of their condition at admission (24–26). 

Subjects not in VS/UWS at admission because of the short 
time between their emerging from coma and their referral to the 
S. Anna had shorter hospitalization times, both in the intensive 
and dedicated semi-intensive care units, and better GOS rat-
ings at discharge than those in VS, irrespective of aetiology 
(χ2=  27.6, p < 0.0001), with a higher probability of scoring a 
GOS class 5 (χ2 = 11.375, p = 0.0004) and a lower probability of 
scoring a GOS class 1 (χ2 = 3.309, p = 0.03). Comparable results 
were obtained when considering post-traumatic and vascular 
subjects separately (χ2 = 22.26, p = 0.0002, and χ2 = 61.31, 
p = 0.0001, respectively) (Table I).

Visual pursuit (“the pursuit eye movement or sustained 
fixation that occurs in direct response to moving or salient 
stimuli”) is a predictor of favourable outcome, with recovery 
of consciousness in 73% of subjects in VS/UWS (45% in the 
absence of eye tracking); it is an established key descriptor of 
the subject’s evolving from the VS/UWS into the MCS (8–11, 
24–27). No differences were observed by testing for a visual 
pursuit response in the evolution of subjects in VS/UWS due 
to traumatic or vascular brain injury, who were found to have 
developed into a MCS in 46% and 49% of cases, respectively, 
after 50 days. These percentages had increased by 8 months 
after brain injury, to 89% and 88%, respectively, and had 
increased further to approximately 90% at discharge or at the 
end of follow-up (> 235 days). The evolution of subjects with 
brain anoxia-hypoxia was less favourable, with percentages of 
evolution increased to a MCS up to 63% at the end of follow-
up. Only 12.6% of subjects were diagnosed 8 months after brain 
injury as still being in a VS/UWS; a later evolution (2 years 
or more) was observed in 7% of the total group of subjects 
classified as being in a VS/UWS at admission (25).

The visual pursuit response reflects (partial) recuperation af-
ter severe brain injury of the brainstem-cortical interaction and 
functional organization, which are thought to sustain conscious-
ness and are interfered with by the pathophysiological discon-
nection resulting in a VS/UWS (25). Its early re-appearance 
(deemed equivalent to early evolution into a MCS) correlates 
with a better outcome, confirming the predicting role of this 
neurological sign (24). However, evolution from the VS to the 
MCS (at least as indicated by recovered visual tracking) also 
appears possible several months after brain injury (25).

COMMENT

The extent to which the neurorehabilitative procedures now in 
use at the S. Anna – RAN Institute or elsewhere are individually 
or collectively capable of promoting an evolution from the VS 
to the MCS to recovered consciousness remains, to a relevant 
extent, undocumented, but a role of the therapeutic milieu, 
i.e. the synergic effects of the environment and the trainers’ 
and nurses’ assistance, appears indisputable. Following this 
rationale, units dedicated to the care and neurorehabilitation of 
subjects with severe brain injury and consciousness disorders, 
such as the VS or MCS, are operative in developed countries. 
The commitment as to resources, logistics, dedicated nurs-
ing, rehabilitation and medical care has substantially reduced 
mortality and the percentage of the so-defined persistent (>1 
year) VS. It has improved the chance of favourable outcome, 
which, in our experience, nevertheless remains worse than for 
patients with severe acquired brain damage who have never 
entered into a VS. In our institute, approximately 80% of sub-
jects in VS/UWS due to brain trauma recovered consciousness, 
while 60% attained recuperation to levels compatible with 
autonomy or allowing quasi-normal life conditions. To this end, 
healthcare and neurorehabilitation in dedicated units should be 
made available as early as possible, with a flexible therapeutic 
continuum congruent to the functional brain organization at-
tained at each phase during the evolution from coma to a VS 
or MCS, to recovered consciousness. In our operative model, 
hospitalization only exceptionally exceeds 6 months, unless 
cognitive/behavioural disturbances occur after recovery of con-
sciousness. Later evolution from a VS/UWS to a MCS, further 
improvement to higher levels of functional brain organization, 
or recovery of consciousness are also possible. 
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