C

	I	I
		Range*
N.	1	65
Age, (years)	23	20-30
Sex, n° female	1	65
White Blood Cells, 10 ⁶ /μl	7,22	4-10
Lymphocytes (%)	30,3	20-40
Neutrophils (%)	49,8	40-80
Eosinophils (%)	14,6	0-5,4
CD4 T cells, 10^3/µl	1260	573-1815
CD8 T cells, 10^3/µl	911	157–881
CD4/CD8 ratio	1,38	0.9-4.2
CD19 B cells, % (10^3/µl)	132	91–536
Th1, CD4 cells, %	0,1	N/A
Th17, CD4 cells, %	0,07	N/A
Th1/Th17 CD4 cells, %	0,22	N/A
Tbet+ CD4 cells, %	6,3	N/A
Treg, % (CD4)	0,1	1,4-5,1
Naive B cells , % (10^3/μl)	88,5 (117)	44-84
Breg, % (10^3/μl)	8,45 (11)	N/A
Switched B cells, % (10 ³ /µl)	8,27 (11)	5-35,2
Plasmablasts, % (10^3/µl)	10,6 (14)	0,2-5
Plasmacells, % (10 ³ /μl)	0,6(1)	N/A

Fig. S1. T and B cells subpopulations. (a) and (b) T and B cells panels were analysed through a 10-colour Navios and Versa Lyse Solution, using respectively a customized panel for T helper cells, the 8-color Dura Clone IM Treg cells Tube® panel added with CD8 antibody and with the 8-color Dura Clone IM B cells Tube® panel added with CD138 antibody. Duraclone were used following the manufacturer' instructions and analysis were performed with Kaluza software (Beckman Coulter life Sciences, Indianapolis, IN, USA) a) T panels; T helper cells were analysed with the following customized panel: CD8ECD®, CD4Pacific Blue, CD45 Krome Orange® (Beckman Coulter Inc.) and IL17AFITC, RORgPE, IL17FPC5.5, TbetPC7, IFNgAPC (eBioScience), following eBioScience instructions for Intracellular Staining Solution; after gating on lymphocytes according to forward (FSC)/side scatter (SSC) (not shown), T cells were distinguished by CD3/CD4/CD8/CD45 staining (1 and 2); after gating CD4 T helper cells, by staining for Tbet and IFNg and for IL17A/F and RoRg Th1 (3), Th17 (4) and Th1/Th17 (5) cells were discriminated. With regard to T regulatory cells panel, TCD4 cells were gated by CD3/CD4/CD8/CD45 staining (1 and 2), and further detailed with CD45RA-staining (6); after gating CD127low/CD25high T helper cells (7), it was possible to distinguish FoxP3+ T regulatory (8), and among them discriminate between Suppressor, natural and inducible T regulatory cells staining with CD39 (8), and Helios (9). (b) After gating on lymphocytes according to forward (FSC)/side scatter (SSC) (not shown), B cells were gated by CD19/ CD45 staining (1); by staining for CD27 and IgD, naïve IgD+IgM+CD27-B cells, IgD+IgM+CD27+ marginal zone B cells, and IgD-IgM-CD27+ switched memory B cells can be distinguished (2). Staining for CD21 and CD38 expression allows the additional distinction of CD38lowCD21low B cells (3 and 4), while by staining for IqM (5) it is possible to discriminate CD38++ IqM high transitional B cells (6), and CD38+++ IgM- plasma blasts (7); plasma cells and B regulatory cells can be distinguished by staining for CD138 (8) and for CD24 (9), respectively. (c) Counts of the T- and B-cell subpopulations compared with reference range from 65 young female adults, between 20 and 30 years (*modified from ref. 3).

CD38