The pathomechanism of atopic eczema is complex. Two of the most important exogenous factors for atopic eczema are allergenic and irritant substances. In this study we investigate the combined effect of topical aeroallergens and irritation on the skin of atopic individuals. We performed patch testing with several aeroallergens (atopy patch test) and with an irritant, sodium lauryl sulphate, on clinically unaffected skin of 30 sensitized patients with atopic eczema. Application was conducted alone and as a consecutive application. Healthy volunteers served as controls. Evaluation was made by measurement of transepidermal water loss 2 h after removal of the patches. In atopic patients, we found increased levels of transepidermal water loss induced by the aeroallergens as well as by sodium lauryl sulphate. The most impressive barrier disruption was seen after application of house dust mite, followed by cat dander and grass pollen. However, the consecutive application of aeroallergens and sodium lauryl sulphate led to a highly pronounced increase in transepidermal water loss. Hence, in sensitized atopic subjects the combined effect of aeroallergens and detergents may cause severe skin problems, and this may be relevant in daily practice. Key words: atopic eczema; atopy patch test; cat dander; consecutive application; grass pollen; house dust mite; irritant contact dermatitis; sodium lauryl sulphate.

(Accepted March 26, 2003.)

H. Löfler, Department of Dermatology, University of Marburg, Deutschhausstr. 9, D-35033 Marburg, Germany. E-mail: Harald.Loeffler@uni-marburg.de

In human skin, disruption of the epidermal water barrier can be induced by detergents such as sodium lauryl sulphate (SLS) (1–3). A recent study has shown that topical aeroallergens affect the epidermal barrier of sensitized atotics (4). This is important, because it can lead to exacerbation of skin problems from house dust mite and cat dander. In daily practice, however, contact with aeroallergens and skin irritants, e.g. SLS, does not occur separately in atopic patients but rather in combination. The question is whether a skin barrier disrupted by aeroallergens is more susceptible to detergents and vice versa. So far, the interaction between these two factors has not been assessed in experimental studies.

The aim of this study was to investigate the single and concomitant effect of aeroallergens and irritants when applied topically on the skin of sensitized atopic subjects.

PATIENTS AND METHODS

Study population

Forty volunteers (22 women and 18 men, aged between 18 and 60 years) participated in the study; 30 of them were patients with atopic eczema recruited from the Department of Dermatology, University of Marburg. Informed consent was obtained from all participants, and the study was approved by the ethics committee of the University Hospital of Marburg.

The patients had an atopy score according to Diepgen et al. (5, 6) of >10, with only slight eczema at the time of testing. All patients had a history of atopic dermatitis, atopic rhinoconjunctivitis and/or asthma with a positive prick test and a specific IgE RAST level of ≥2 to at least one of the following substances: house dust mite (dermatophagoides pteronyssinus, n=24), cat dander (n=14), grass pollen (n=25) or birch pollen (n=13).

Ten healthy volunteers with no sign of atopy (atopy score according to Diepgen et al. (5, 6) of <4) and with negative prick tests to the above-mentioned allergens served as controls.

Test procedure

The tested aeroallergens were house dust mite, grass and birch pollen and cat dander, which were obtained from HAL Ltd. (Düsseldorf, Germany) and used in concentrations of 20,000 and 50,000 AU/ml in petrolatum. These concentrations are not comparable with those used in the standardization study of Darsow et al. (7, 8). We performed a pilot study and tested each allergen in 10 sensitized atopic individuals with both concentrations. We saw significantly stronger reactions with 50,000 AU/ml compared to 20,000 AU/ml in the patients, whereas no reactions were seen in controls. For further testing, 50,000 AU/ml was chosen. All were patch-tested on the back with four aeroallergens in large Finn Chambers® (inner diameter 12 mm, Epitest Ltd., Hyyrä, Finland) or Spinapore® tape in accordance with the schedule in Table I. The first patch tests were applied for 24 h, removed and new patch tests applied (“consecutive application”). Irritation testing was done according to the guidelines of sodium lauryl sulphate exposure tests by the Standardization Group of the European Society of Contact Dermatitis (9). Skin reactions were evaluated by transepidermal water loss (TEWL) with a TEWAMETER TM210 (Courage & Khazaka, Cologne, Germany) with the patient lying face down on a couch. Measurements were performed before application of test chambers (basal values) and 2 h after patch removal. During the TEWL measurements, the probe was hand-held with the
use of an insulating glove until a stable TEWL value was established (~1 min). Air convection was prevented by use of a protective measuring chamber and by reducing movements and speaking in the test-room. The test results were evaluated by two experienced persons in accordance with the guidelines for TEWL measurement by the Standardization Group of the European Society of Contact Dermatitis (10). Each TEWL test value was the average of three single measurements. Before measurement, the volunteers rested for at least 0.5 h in the test-room, a fully air-conditioned room (climatization with air movement by Thermotexx®) with a stable temperature between 20°C and 22°C and relative humidity between 35% and 62%.

Bistatistical methods

Data were calculated with SPSS for Windows®. TEWL values were shown as median, as there was no symmetrical distribution according to the Kolmogorov-Smirnov test. Delta TEWL results were often slightly increased and occasionally showed a very strong increase. Hence the distribution showed a shift to the left. Differences between the test groups were calculated by means of the Mann-Whitney U test. Differences within a test group (e.g. SLS vs. aeroallergen) were calculated by means of the Wilcoxon test. The data for each group of aeroallergen-positive volunteers were evaluated and compared separately with the control group.

RESULTS

The medians of TEWL values are listed in Table II. There were visible atopy patch reactions in 38% to 64% of the sensitized subjects (n = 30). In these individuals, a significant increase was observed in TEWL, and was highest in individuals sensitized and tested with house dust mite and grass pollen, less severe with cat dander and only moderate (but still significant) with birch pollen. There was no relationship between patch-test positivity and RAST test in the patients.

Application of aeroallergens to healthy, non-sensitized volunteers revealed neither clinical changes nor significant changes in TEWL, regardless of which aeroallergen has been applied. All volunteers showed an increase in TEWL after SLS application (alone or consecutive application).

The application of SLS and petrolatum (and vice versa) led to a similar significant increase of TEWL in the group of atopics compared to the healthy control group. However, the consecutive application of aeroallergens and SLS (rows 2 and 3) led to a significantly stronger disruption of the epidermal barrier in the group of sensitized atopics compared to the control group (Fig. 1).

The sequence of applications (aeroallergen/SLS or SLS/aeroallergen) was not relevant for the test outcome in the atopic group, whereas in the control group the sequence aerosallergen/SLS showed a tendency to stronger reactions compared to the sequence SLS/aeroallergen. Among the atopics, however, the SLS-induced increase of TEWL was higher after SLS once (rows 4 and 5) or twice (row 6), and also stronger than after application of the aeroallergens alone (row 1). To elucidate the differences between the various aeroallergen groups and the controls, the TEWL values after aeroallergen and SLS application are shown in Fig. 1.

DISCUSSION

In sensitized atopic patients, topical application of a type 1 allergen or classical aeroallergens can give rise to a cutaneous response morphologically similar to atopic eczema (7, 8). This so-called “atopy patch test” has been shown to be sufficient in detecting relevant allergens in subjects with atopic dermatitis and the test’s specificity regarding the clinical relevance is better than prick

Table I. Test design; rows 1–3 with 4 patches (for each aeroallergen one patch), rows 4–6 with only one patch

<table>
<thead>
<tr>
<th>Row</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 × aeroallergens</td>
<td>4 × aeroallergens</td>
<td>4 × SLS</td>
</tr>
<tr>
<td>2</td>
<td>4 × aeroallergens</td>
<td>4 × SLS</td>
<td>Removal of patch and evaluation</td>
</tr>
<tr>
<td>3</td>
<td>4 × SLS</td>
<td>4 × aeroallergens</td>
<td>Petrolatum</td>
</tr>
<tr>
<td>4</td>
<td>Petrolatum</td>
<td>SLS</td>
<td>SLS</td>
</tr>
<tr>
<td>5</td>
<td>SLS</td>
<td>Petrolatum</td>
<td>SLS</td>
</tr>
<tr>
<td>6</td>
<td>SLS</td>
<td>SLS</td>
<td>SLS</td>
</tr>
</tbody>
</table>

Table II. Transepidermal water loss (TEWL) (g/m² h) in the different groups and schema of applications. Values (except the basal value) are displayed as medium Δ-values (TEWL test basal-value)

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline (row 6)</th>
<th>SLS (row 2)</th>
<th>Aeroallergen (row 1)</th>
<th>Aeroallergen/SLS (row 3)</th>
<th>SLS/Aeroallergen (row 5)</th>
<th>Petrolatum/SLS (row 4)</th>
<th>SLS/Petrolatum (row 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Mite 8.0</td>
<td>17.9</td>
<td>0.3</td>
<td>18.1</td>
<td>16.1</td>
<td>10.1</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>Grass 0.4</td>
<td>20.1</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birch 0.5</td>
<td>14.5</td>
<td></td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat 0.3</td>
<td>11.2</td>
<td></td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopy</td>
<td>Mite 8.4</td>
<td>14.6</td>
<td>7.1*</td>
<td>22.2*</td>
<td>22.0*</td>
<td>12.4</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>Grass 9.5</td>
<td>12.9</td>
<td>8.8*</td>
<td>18.7*</td>
<td>20.9*</td>
<td>11.9</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Birch 9.5</td>
<td>17.7</td>
<td>2.6*</td>
<td>14.8</td>
<td>11.9*</td>
<td>14.1</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Cat 9.3</td>
<td>17.6</td>
<td>4.5*</td>
<td>14.5*</td>
<td>23.3*</td>
<td>12.6</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Mite = house dust mite allergen; grass = grass pollen allergen; birch = birch pollen allergen; cat = cat dander allergen.

*Difference of TEWL between basal value and value after aeroallergen application is significant (p < 0.01).

Acta Derm Venereol 83

or intracutaneous testing (11). Activation of dendritic
cells seems to be a crucial pathogenetic factor and the
reaction is IgE-mediated (13, 15, 16) with release of
proinflammatory mediators and induction of allergen-
specific T-cell clones (17–19). The eczema development
includes skin barrier disruption, composition of the
cellular infiltrate (20–22) and cytokine release (23, 24)
similar to atopic eczema.

Until now, pretreatment with a detergent before an
atopy patch test has only been performed to enhance
the penetration of allergens (25). We found no changes
in skin barrier function after application of aeroaller-
gens on the skin of healthy volunteers, indicating that
aeroallergens do not usually disrupt the intact epider-
mal barrier. By contrast, the application of aeroaller-
gens to sensitized atopics leads to an increase of TEWL
as an indicator of barrier disruption, thereby supporting
the data of Gfesser et al. (4). The observed barrier
disruption in our study was dependent on the aero-
allergen used: While there was a strong increase in
TEWL after house dust mite and grass pollen allergens,
the barrier disruption caused by cat dander and
especially birch pollen was less pronounced. This is in
line with earlier findings (11) and may be due to the
different size of the molecules and degree of sensitiza-
tion. Individuals who showed a strong barrier disrup-
tion after atopy patch test often reported a seasonal
aggravation of their atopic eczema (26).

In the control group, application of an aeroallergen
to the skin pretreated with 0.5% SLS did not worsen
the barrier disruption compared to a consecutive applica-
tion with SLS/petrolatum. This indicates that in healthy
volunteers aeroallergens have no significant influence
on the intensity of the cutaneous response to primary
irritants.

However, different results were obtained in the group
of patients with atopic eczema: the consecutive applica-
tion with SLS/aeroallergen led to a significantly stronger
reaction than SLS/petrolatum. This is understandable
because application of petrolatum usually leads to a
diminished barrier disruption caused by SLS (27, 28). By
contrast, aeroallergens in petrolatum can induce a
barrier disruption, so that the combination with SLS
increases this disruption probably because of better
penetration of the aeroallergens. This would support the
notion that atopic skin with a disturbed barrier function
is more susceptible for induction of specific immune
responses. Such a specific reaction may, in turn, lead to
further impairment of the skin barrier and worsening of
pre-existing eczema.

In daily life, taking showers or bathing in a tub during
the pollen season can exert a calamitous effect on the skin
of atopic individuals, as this provides an adverse associ-
ation of aeroallergen and irritant exposure. Therefore,
when taking a shower, an irritant effect can be diminished
by quick showering and reduced use of soap and detergents.

In conclusion, consecutive application of SLS and
aeroallergens in sensitized atopic eczema patients leads to
a more severe barrier disruption than a separate applica-
tion of each component. This interrelation between allergy
and irritation (which may be dependent on the severity of
the dermatitis (29)) is a further factor that can induce
eczema. Hence, in the pathogenesis of atopic eczema,
endogenous factors and irritation and (aero)allergens may
act together, giving rise to a vicious circle.

Fig. 1. Delta transepidermal water loss (ΔTEWL) values (difference to the basal value) after aeroallergens alone or consecutive application of aeroallergen and SLS.

330 H. Löffler et al.
Acta Derm Venereol 83
ACKNOWLEDGEMENTS

We thank Dr. Peter Zoefel, Computer-Center of the University of Marburg, for biostatistical consultations, and Mrs. Sabine Weimar for technical assistance.

REFERENCES

18. Mudde GC, Van Reijesen FC, Boland GJ, de Gast GC, Brujinzeel PL, Brujinzeel-Koomen CA. Allergen presentation by epidermal Langerhans’ cells from patients with atopic dermatitis is mediated by IgE. Immunology 1990; 69: 335–341.