Linear IgA/IgG bullous dermatosis (LAGBD) is an autoimmune blistering disease characterized by the local accumulation of IgA- and IgG-class anti-basement membrane autoantibodies. It typically presents as a generalized pruritic vesiculobullous eruption. No cases of localized LAGBD have yet been reported. We report a case of a 78-year-old man with LAGBD localized to the perianal area. The patient complained of suffering from persistent ulcers around the anus for more than 3 years. Physical examination revealed several blisters and ulcers up to 2-cm in diameter around the anus. No lesions were found elsewhere on the body. Histological analysis of a skin biopsy revealed subepidermal blistering, while direct immunofluorescence showed the linear deposition of IgA and IgG antibodies at the dermoepidermal junction. Indirect immunofluorescence of normal human skin whose layers had been separated using 1M NaCl showed the binding of both IgA and IgG to the epidermal side. Immunoblotting demonstrated the presence of circulating IgA and IgG autoantibodies that bound to a 120-kDa protein. This is the first case of localized LAGBD whose skin lesions were restricted to the perianal region. Key words: Linear IgA/IgG bullous dermatosis; linear IgA bullous dermatosis; bullous disease; BP180; collagen XVII; immunoblotting.

(Accepted July 20, 2010.)

A biopsy was taken from the edge of the skin lesion. Histopathological analysis revealed subepidermal blistering and infiltration by lymphocytes, as well as neutrophils and eosinophils (Fig. 2a). Direct immunofluorescence (IF) analysis of lesional skin showed marked deposition of IgA (Fig. 2b), IgG (Fig. 2c) and C3 at the dermo-epidermal junction. Indirect IF using 1M NaCl split human skin demonstrated whose layers had been separated with the binding of both IgA and IgG class autoantibodies to the epidermal side of the dermoeipidermal junction. No dermal binding was observed. Epidermal extracts of normal human skin, supernatants of cultured HaCaT cells and recombinant proteins (NC16A and the C-terminal domain of BP180) were prepared as described previously (8–11) and used in immunoblot analysis of IgA and IgG class antibodies. While the patient’s serum failed to react with 180- and 230-kDa antigens in epidermal extracts of normal human skin (Fig. 3a), it carried IgA and IgG class autoantibodies that bound to a 120-kDa protein in concentrated supernatants of cultured HaCaT cells (Fig. 3b). Immunoblotting with the recombinant NC16A domain of BP180 produced no specific binding (Fig. 3c). Further immunoblotting revealed that the patient’s serum contained IgG, but not IgA, antibodies specific for the recombinant C-terminal domain of BP180 (BP915) (Fig. 3d). Based on these observations, we diagnosed the patient with LAGBD. Within 2 weeks of starting oral prednisolone treatment (0.5 mg/kg per day), the formation of new lesions ceased. When, however, the prednisolone dose was tapered to 0.1 mg/kg daily, new lesions again began to form. We therefore administered dapsone and gradually tapered the prednisolone dose. No new lesions appeared during 6 months of treatment with dapsone (25 mg daily).

DISCUSSION

LAGBD and LABD typically present as a generalized pruritic vesiculobullous eruption. Although 8 cases of localized LABD have been reported (4–7, 12–15), no cases of localized LAGBD have been described. We believe this to be the first case of localized LAGBD whose skin lesions were restricted to the perianal area.

LAGBD comprises an heterogeneous group of diseases characterized by subepidermal blistering and the specific binding of IgG and IgA antibodies to the epidermal basement membrane (3). Most patients carry autoantibodies against 97-/120-kDa antigens. Some, however, carry autoantibodies against a 230-kDa antigen, as well as additional, as yet uncharacterized epidermal antigens (3, 16). Some cases of LAGBD have been reported as LABD, even though they satisfy the criteria for diagnosis of LAGBD (17). Recent immunoserological studies detected circulating IgA and IgG autoantibodies specific for certain epitopes of BP180 in bullous pemphigoid and LABD patients (18, 19). These findings suggest that there may be considerable overlap between bullous pemphigoid, LABD and LAGBD. In only a few cases of LAGBD have clinical characteristics been described in detail. Most of these displayed a vesiculobullous appearance similar to that of LABD, and were effectively controlled with low-dose prednisolone, dapsone or sulfapyridine (16). More cases are needed to clarify the clinical differences between these disease categories.

The present case carried circulating IgA and IgG antibodies that bound to the 120-kDa soluble ectodomain of BP180. IgG class antibodies also reacted with BP915, the recombinant C-terminal domain of BP180.
Localized linear IgA/IgG bullous dermatosis which is the protein that is primarily targeted in mucous membrane pemphigoid (MMP) (11). In a study by Georgi et al. (17) BP915 was bound by IgA in 44% of lamina lucida-type LABD serum samples tested and by IgG in 33% of such samples (17). The authors concluded that the C-terminus of BP180 represents the primary target on the BP180 ectodomain for both IgA and IgG antibodies in the serum of LABD patients (17). Healing with scarring is characteristic of MMP but it is also found in some lamina lucida-type LABD patients (17, 20). This clinical overlap may well be explained by overlap in the antigenic sites on the BP180 ectodomain targeted by autoantibodies.

In summary, we have described an unusual case of LAGBD localized to the perianal region for more than 3 years that reveals the heterogeneous nature of LAGBD. LAGBD should be considered when diagnosing the cause of perianal blistering.

ACKNOWLEDGEMENT
We thank Ms Yuko Hayakawa for her technical assistance. The authors declare no conflict of interest.

REFERENCES
8. Dmochowski M, Hashimoto T, Bhogal BS, Black MM, Zone...