8-Methoxypsoralen Plus Ultraviolet A Reduces the Psoriatic Response to Imiquimod in a Murine Model

Nitesh SHIRSAT1, Karin WAGNER2, Simone TANGERMANN1, Michaela SCHLEDERER4, Christian RINGEL1, Lukas KENNER2,3,4, Bernhard BRÜNE5 and Peter WOLF1

1Research Unit for Photodermatology, Department of Dermatology and Venereology, 2Center for Medical Research, Medical University of Graz, Graz, 3Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 4Department of Pathology, Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria, 5Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany, and 6Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria

The effects of 8-Methoxypsoralen plus ultraviolet A (PUVA) or ultraviolet B (UVB) alone on imiquimod-induced psoriasis were examined in a mouse model. Mouse skin was treated with repetitive sub-phototoxic doses of PUVA or UVB before or during the induction of toll-like receptor 7/8 activation and psoriasis through the application of imiquimod. PUVA, to a greater degree than UVB, suppressed the established imiquimod-induced psoriatic phenotype, but pretreatment with PUVA prior to administration of imiquimod also reduced the susceptibility of murine skin to respond to imiquimod to a greater degree than did pretreatment with UVB. PUVA downregulated baseline levels of miR-NA27a and 29a, as well as interferon-γ, interleukin-17 and -9, cytokines, which drive psoriatic inflammation. Microarray analysis showed enrichment of senescence pathway genes linked to upregulation of p16/p21 proteins after PUVA pretreatment. However, the anti-psoriatic effect of PUVA was lost when there was an interval of 7 days between final exposure to PUVA and the start of administration of imiquimod. This indicated that UVB and PUVA diminished imiquimod-induced established psoriatic inflammation, but also primed the skin in favour of a reduced responsiveness to toll-like receptor activation.

Key words: psoriasis; PUVA; UVB; imiquimod; interleukin-9, senescence.

Accepted Feb 13, 2018; Epub ahead of print Feb 13, 2018

Corr: Peter Wolf, Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, AT-8036 Graz, Austria. E-mail: peter.wolf@medunigraz.at

MATERIALS AND METHODS

Animals and psoriatic model

BALB/c mice were purchased from Charles-River, Sulzfeld, Germany and housed in the animal facility of the Centre for Medical Research, Medical University of Graz, Austria. All procedures to which the mice were subjected were approved by the Austrian Government, Federal Ministry for Science and Research (protocol number BMWF-66-010/0032-11b/2013). Female mice aged 7–8 weeks had their back skin shaved 48 h before the start of the study. Aldara® (IMQ) 5% cream (MEDA Pharmaceuticals, Vienna, Austria) was used to induce psoriatic skin changes on the shaved back of the mice, as described previously (28). A total amount of 62.5 mg IMQ per treatment and mouse was applied in the morning whereas PUVA or UVB treatment, when given on the same days, was administered in the afternoon at an interval of 6 h after IMQ administration. All animals were maintained with alternating 12-h light-and-dark cycles and at controlled temperature and humidity.
in facilities approved by the Austrian Government. Water and food were provided *ad libitum*. Mice were euthanized with an overdose of isoflurane and all efforts were made to minimize suffering.

PUVA and UVB treatment and determination of MPD

8-Methoxypsoralen (8-MOP) plus ultraviolet A (PUVA) or ultraviolet B (UVB) alone were examined in the mouse model. Groups of mice were painted on their backs with 200 µl 8-methoxypsoralen (8-MOP) (Sigma-Aldrich, St Louis, MO, USA) in ethanol (0.1 mg/ml) or vehicle (95% ethanol) or were left untreated. The mice were then kept for 15 min in individual compartments of standard cages to allow penetration of 8-MOP prior to irradiation with UVA.

UVA irradiation was performed using a Waldmann UV236A irradiation system, equipped with 2 fluorescent PL 36W/09-PUVA light tubes (emission range 315–400 nm; peak 365 nm; Waldmann Medizintechnik, Villingen-Schwenningen, Germany) at a mean irradiance of 8.55 mW/cm² at a distance of 15 cm from the dorsal skin of the mouse to the glass cover of the irradiation system (which was positioned upside down on top of the cage). Irradiance was monitored with a Waldmann PUVA photometer, calibrated for the irradiation system.

UVB radiation was performed using a Waldmann 236 light source, equipped with 2 Waldmann UV6 fluorescent tubes (emission range 280–360 nm; peak 320 nm) (29). This light source emitted a spectrum of approximately 40% UVB and 60% UVA radiation; 99% of the erythema-producing radiation of this light source was derived from the UVB region (280–320 nm), as determined by spectral measurement (MSS 2040 UV Spectral Radiometer, Fröndenberg, Germany) and calculation of the CIE-weighted erythema spectrum (29). The mean UVB irradiance of the lamp was 1.7 mW/cm², as measured by a Waldmann UV photometer with UV6 detector head, appropriate for the radiation device.

To determine the minimal phototoxic dose (MPD) of PUVA and UVB, kinetic and dose-response studies were performed in BALB/c mice, as described previously (15). The MPD on the back of the mice was 0.5 J/cm² for UVA after topical psoralen photosensitization and 0.4 J/cm² for UVB without photosensitization (Fig. 1). For repeated treatment of the mice, PUVA and UVB was given at a sub-phototoxic dose level of 0.25 J/cm² (mean exposure time 29 s) and 0.20 J/cm² (mean exposure time 120 s), respectively, twice a week for 2 weeks.

In order to elucidate the mechanism of phototherapy in psoriatic inflammation, PUVA and UVB pretreatment were used to investigate whether the therapeutic effect was direct or indirect. As outlined in the study plan (Fig. S1†), PUVA pretreatment with a single exposure (Group VII) as well as PUVA or UVB pretreatment with 4 repetitive exposures over 2 weeks was given until 3 days (or more) before the start of an IMQ cycle over a period of 3 days (Groups II and IX). In order to study the duration of the effect of phototherapy, in certain study groups the start of IMQ treatment was delayed by 7 days after the final phototherapy exposure (Groups III and X). Detailed information about all other experimental procedures, reagents, and statistical analyses are given in Appendix S1†.

RESULTS

Both PUVA and UVB treatment reduced psoriatic inflammation in the IMQ model when given simultaneously. Double skinfold thickness (DSFT) revealed that IMQ-induced psoriatic inflammation was suppressed when

1https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-2905
of 7 days between final UVB exposure and start of IMQ this therapeutic effect of PUVA was partially sustained, compared with the effect of UVB, which was entirely lost. After a 7-day gap, the overall mean suppression of psoriatic skin swelling was 22.6% for PUVA, whereas there was worsening of macroscopic skin swelling for UVB (with an overall negative value of 21.6% suppression in skin swelling) (Table S1). The effect of PUVA and UVB on overall skin thickness was paralleled by the effect on cumulative disease score (similar to human PASI), as described previously (28) for IMQ-induced psoriatic inflammation (Fig. 2B, F).

These data were consistent with the results of histological examination of the skin samples taken 24 h after the final administration of IMQ in the phototherapy pretreatment model (Fig. 2D, H and Table S1). Application of IMQ led to epidermal hyperplasia with strong epidermal thickening, hyperkeratosis along with elongated rete ridges and parakeratosis and cellular infiltration of the dermis. The mean epidermal thickness was 18.4 μm in control mice (data not shown) vs. up to 78.6 μm and 86.7 μm in IMQ-treated mice, respectively (Fig. 2C, G). The mean number of epidermal layers was 1.3 in control mice (data not shown) vs. up to 7.2 and 7.8 layers in IMQ-treated mice in the experiment shown in Fig. 2C, G, respectively. The overall mean suppression of IMQ-induced epidermal hyperplasia was 58.1% and 48.5% for PUVA and UVB (reduction in skin thickness to 46.9 and 49.4 μm, respectively), as measured by epidermal thickness, and 45.3% and 25.3%, as measured by epidermal layers (Table S1). Similar to the effect of PUVA on overall macroscopic skin thickness, the effect of PUVA in reducing epidermal hyperplasia was partially sustained, whereas the effect of UVB was entirely lost after a gap of 7 days between final UVB exposure and start of IMQ. With the 7-day gap, for PUVA the overall mean suppression of epidermal hyperplasia was 15.6% for epidermal thickness and 16.2% for the increase in epidermal layers, whereas for UVB there was worsening of epidermal hyperplasia (with overall negative values of 5.1% and 15.9%) (Table S1). Pretreatment with a single dose of PUVA (Group VII) also resulted in less IMQ-induced inflammation, but its effect was smaller than that after repetitive PUVA exposure (data not shown). Thus, overall, PUVA suppressed the IMQ-induced psoriatic phenotype to a greater degree than did UVB.
Furthermore, the effect of PUVA pretreatment on the systemic Th1/Th2/Th17 cytokine and chemokine expression profile in IMQ-treated mice was evaluated. A downregulatory effect of PUVA pretreatment on the serum levels of cytokines of the Th1 and IL-23/Th17 axis was identified, including IFN-γ, IL-1β, TNF-α, IL-17A, IL-22, IL-23 as well as chemokines such as GRO alpha, IP-10, MCP-1, MCP-3, MIP-1α, MIP-1β, MIP-2, RANTES and eotaxin (Fig. 3). In contrast, there was an ambivalent response of Th2 cytokines with a trend of upregulation of IL-4 (p = 0.057) and downregulation of IL-5 (p = 0.05) after PUVA treatment. For most cytokines (except IL-23 and GRO-alpha) the effect of PUVA was lost when they were measured at the end of the experiment with an interval of 7 days between final PUVA and first IMQ exposure. IL-2, IL-6, IL-10, IL-27 and GM-CSF levels were below the detection limit of the immunoassay in all samples. This systemic effect of PUVA on cytokine levels was paired with its effect on spleen size by reducing splenomegaly (data not shown).

We also studied the cytokine and chemokine levels after PUVA treatment (before the start of IMQ treatment) and observed a significant downregulation of IFN-γ, IL-17A, IL-9, and upregulation of GRO-alpha compared with untreated controls (Table 1).

To assess the gene signature development due to PUVA pretreatment, we performed microarray analysis of the RNA from dorsal skin for the samples, as outlined in the Materials and Methods section. As shown in Fig. 4, pretreatment with PUVA significantly altered the expression of 30 genes that were identified based on the fold change of >1.5 and a p-value of <0.05 in the array. Those genes included Col1A1, Col1A2, Col3A1, Col5A1, Col5A2, Col6A3, Col6A4, TIMP1 and MMP13, which were overexpressed compared with untreated controls (Group VIII) and Group VI (Fig. 4). It is notable that the...

Table 1. Change in serum levels of cytokines and chemokines due to pretreatment with 8-methoxypsoralen plus ultraviolet A (PUVA) before exposure to imiquimod in a murine model

<table>
<thead>
<tr>
<th>Cytokine/chemokine</th>
<th>Control (VIII) Mean ± SEM</th>
<th>4PUVA+3D (V) Mean ± SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ</td>
<td>8.9 ± 1.1</td>
<td>1.2 ± 4.2</td>
<td>0.03</td>
</tr>
<tr>
<td>IL-17A</td>
<td>26.2 ± 14</td>
<td>0.1 ± 1.1</td>
<td>0.05</td>
</tr>
<tr>
<td>IL-9</td>
<td>63.3 ± 18</td>
<td>0.0 ± 0.0</td>
<td>0.05</td>
</tr>
<tr>
<td>GRO-alpha</td>
<td>12.3 ± 10.7</td>
<td>34.1 ± 9.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Eotaxin</td>
<td>3,620 ± 1,219</td>
<td>6,067 ± 1,373</td>
<td>0.11</td>
</tr>
<tr>
<td>IL-23</td>
<td>0.17 ± 0.29</td>
<td>0.83 ± 0.76</td>
<td>0.13</td>
</tr>
<tr>
<td>IL-13</td>
<td>13.4 ± 20.6</td>
<td>32.1 ± 16.8</td>
<td>0.20</td>
</tr>
<tr>
<td>IL-27</td>
<td>21.6 ± 74.4</td>
<td>95.0 ± 139</td>
<td>0.20</td>
</tr>
<tr>
<td>IP-10</td>
<td>978 ± 324</td>
<td>618 ± 113</td>
<td>0.23</td>
</tr>
<tr>
<td>MCP-3</td>
<td>2,886 ± 1,805</td>
<td>1,248 ± 755</td>
<td>0.23</td>
</tr>
<tr>
<td>IL-18</td>
<td>7.9 ± 5.9</td>
<td>4.2 ± 3.1</td>
<td>0.24</td>
</tr>
<tr>
<td>MCP-1</td>
<td>13.3 ± 10.7</td>
<td>4.7 ± 2.1</td>
<td>0.27</td>
</tr>
<tr>
<td>IL-22</td>
<td>10.1 ± 5.6</td>
<td>7.2 ± 6.3</td>
<td>0.31</td>
</tr>
<tr>
<td>MIP-2</td>
<td>29.1 ± 8.8</td>
<td>36.8 ± 5.5</td>
<td>0.40</td>
</tr>
<tr>
<td>IL-4</td>
<td>8.6 ± 6.6</td>
<td>5.3 ± 1.5</td>
<td>0.43</td>
</tr>
<tr>
<td>IL-5</td>
<td>11.3 ± 8.2</td>
<td>43.8 ± 41.6</td>
<td>0.50</td>
</tr>
<tr>
<td>IL-1 beta</td>
<td>1.8 ± 1.3</td>
<td>2.8 ± 2.1</td>
<td>0.59</td>
</tr>
<tr>
<td>MIP-1 beta</td>
<td>25.8 ± 8.2</td>
<td>29.3 ± 3.3</td>
<td>0.70</td>
</tr>
<tr>
<td>RANTES</td>
<td>285.2 ± 177</td>
<td>378.5 ± 55.8</td>
<td>0.70</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>3.8 ± 1.5</td>
<td>3.1 ± 1.8</td>
<td>0.82</td>
</tr>
<tr>
<td>TNF-alpa</td>
<td>11.7 ± 7.5</td>
<td>8.4 ± 4.5</td>
<td>0.86</td>
</tr>
<tr>
<td>MIP-1 alpha</td>
<td>214.6 ± 58.3</td>
<td>226.8 ± 37.3</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Control (VIII) vs. 4PUVA+3D (V) samples were analysed using multiplex bead immunoassay. Entries represent values of detected cytokines and chemokines. IL-2, IL-6, IL-10 and GM-CSF were not detected by the assay. p-values were determined using Mann-Whitney U test. SEM: standard error of the mean; IFN: interferon; IL: interleukin; GRO-alpha: growth-related oncogene-alpha; IP-10: inducible protein 10; MCP: monocyte chemotactic protein; MIP: macrophage inflammatory protein.
majority of these genes belong to collagen (Col), matrix metallopeptidase (MMPs) and tissue inhibitor of metalloproteinase (TIMP 1) families, which are associated with senescence and apoptosis. In contrast, alkaline ceramidase 2 (Acer2), which mediates cell proliferation, differentiation, apoptosis, adhesion, and migration, belonging to the sphingosine and sphingosine-1-phosphate (S1P) metabolism pathway (30), and miRNA-29a, which is a negative regulator of TIMP 1, were down-regulated (31). The fold-change bar diagram in the lower part of Fig. 4 highlights the differences in the expression of the 30 genes (normalized to control) 3 days after the final PUVA treatment of Group V, compared with Group VI, which had a 7-day gap between final PUVA exposure and collection of skin samples.

To confirm the activation of the senescence pathway, immunohistochemistry was used to quantify the expression of the key upstream markers p21 and p16 in the dorsal skin of the mice. The presence of p21 in the basal layer of the epidermis was observed in all treatment groups (Fig. 5). PUVA treatment increased the expression of p21 in the entire epidermis, and in the dermis mainly in epithelial cells of hair follicles. Similarly, PUVA treatment also increased the expression of p16 in the epidermis and dermis. In contrast, UVB pretreatment did not significantly affect the expression of p21 and p16 protein in the skin (data not shown). As outlined in the graphic panel of Fig. 5, the increase in senescence after PUVA was lost in mice that had a 7-day gap between final PUVA exposure and collection of tissue samples.
It is notable that staining for the phosphorylated form of H2AX, called γ-H2AX, as p53/p21 upstream regulator (32), was completely absent (Fig. 5) in PUVA-pretreated skin (before the start of IMQ treatment), while it was present in clusters in IMQ-treated skin (as positive control) (33).

In addition, microarray data (Fig. 4) indicated that PUVA pretreatment at a sub-phototoxic level upregulated Fscn1, a gene related to dendritic cell maturation. Thus, we performed multiplex immunohistochemical staining for dendritic cell maturation using MHC-II expression as the marker in the skin samples taken after PUVA pretreatment, but did not detect any statistically significant differences among the different treatment groups (data not shown).

DISCUSSION

Elucidation of the cellular networks and molecular signals that promote the development of psoriasis depends on the use of appropriate animal models. Regardless of the fundamental differences in the immune response, cellular interaction and function of the skin between humans and mice, there are indisputable benefits of in vivo models of psoriasis (34). The repetitive application of IMQ reveals a complex biological outcome involving multiple cell types, cytokines, and inflammatory pathways, and represents an acute model of skin inflammation that captures the initial stages of development of psoriasis. During the initial phase, application of IMQ instigates erythema and infiltration of the skin, which reaches a maximum after the final day of repetitive application of IMQ (35). The skin of different strains of mice may exhibit different levels of susceptibility to environmental stimuli including UV radiation (36, 37); thus, we initially identified the MPD in BALB/c mice in this series of experiments (Fig. 1) and subsequently mainly used sub-inflammatory doses in the study. The PUVA MPD (0.5 J/cm²) was identical to that determined in a previous study for wild-type controls with ICR (CD-1R) background of the K5.hTGF-β1 psoriasis model, in which we also investigated the anti-psoriatic effect of PUVA (15). As in the previous study with K5.hTGF-β1 mice (15), the lower PUVA dose of 0.25 J/cm² was more effective than the higher dose of 0.5 J/cm² in clearing psoriatic lesions. Overall, PUVA was able to suppress established IMQ-induced psoriatic inflammation in the simultaneous treatment protocol to a greater degree than UVB radiation (Fig. S2), but also pretreatment with PUVA (before administration of IMQ) was, to a greater degree than UVB...
radiation, able to suppress the susceptibility of murine skin to mount psoriatic inflammation (Fig. 2). Since the antipsoriatic effect of PUVA in this study was, in general, greater than that of UVB (consistent with the results of clinical studies (2, 3, 38–41)) we focused on the former in investigating mechanistic aspects.

The effect of PUVA on IMQ-induced macroscopic psoriatic skin changes (Fig. 2A and B) was paired with a reduction in histological epidermal hyperplasia and inflammation (Fig. 2C and D) and downregulation of psoriatic cytokines of the Th1 and Th17 axis, including IFN-γ, TNF-alpha, IL-17, IL-23 and IL-22 (Fig. 3), consistent with the results of our previous study in K5.hTGF-b1 transgenic mice (15). Moreover, repetitive pretreatment with PUVA downregulated the pro-psoriatic cytokines IFN-γ, IL-9 and IL-17 at baseline before the start of IMQ treatment (Table I). The effect of PUVA on IL-23 and GRO-alpha was sustained, as measured in Group III 10 days after final PUVA exposure and 24 h after final exposure to IMQ (Fig. 3). Since IL-23 is crucial for driving the IL-23/Th17 axis, and GRO-alpha (IL-8) is essential for growth promotion of keratinocytes (42), the inhibition of these cytokines was consistent with the partially sustained effect of PUVA in reducing macroscopic and microscopic inflammation of the skin and epidermal hyperplasia (Fig. 2C, D).

The observation that PUVA before the start of IMQ treatment induced the downregulation of IL-9 (Table I) is intriguing, since this cytokine is known to be produced transiently and prior to the activation-induced upregulation of other downstream inflammatory pro-psoriatic cytokines (43). IL-9 functions indirectly by regulating the induction of Th1/Th2/Th17 cytokines, such as IFN-γ, IL-5, IL-13 and IL-17 (43). In agreement with this, dermal injection of IL-9 enhanced Th17-related psoriasiform inflammation in K5.hTGF-b1 transgenic mice and its blockade by anti-IL-9 antibody suppressed disease and expression of IL-17A (44). In the K5.hTGF-b1 model, PUVA was effective in diminishing psoriatic inflammation, in parallel with strong downregulation of IL-9 (15, 44). It is notable that IL-9 and its receptor are expressed in the infiltrate of lesional skin in patients with psoriasis (43, 44), indicating its potential role in the pathophysiology of psoriatic skin. Moreover, the IL-9 axis has been shown to drive γ delta T-cell activation in patients with psoriatic arthritis (45).

High throughput genome microarray analysis showed enrichment of senescence pathway genes after pretreatment with PUVA. This was validated by staining for the phosphorylated form of H2AX (known as γ-H2AX), which is a variant of histone H2A in mammalian cells (phospho-Histone H2A.X (Ser139)) and a p53/p21 upstream regulator protein of DNA damaging responses (32), was completely absent in PUVA pretreated skin, while it was present in clusters in the IMQ-treated epidermis (Fig. 5), consistent with previous studies (33). This was not entirely unexpected, since we collected the skin samples 3 days after the final exposure to PUVA, a time-point at which any PUVA-induced upregulation of γ-H2AX was mostly likely exhausted due to its short-life kinetics and rapid dephosphorylation, along with p53/p21 induction (32, 47, 48).

Cellular senescence requires functional p53 and pRB family proteins, both of which regulate growth signalling. The CDKIs p21 and p16, which play a role in cell cycle arrest leading to senescence and apoptosis (53). Elevated concentrations of MMPs have been found in the scales of psoriatic lesions, but their levels decreased in patients with more severe disease, consistent with inverse PASI correlation (54). Similarly, serum levels of TIMP-1 and TIMP-2 decreased with severity of psoriasis. In our study, PUVA-induced MMP gene expression (Fig. 4) was paralleled by improvement in the psoriatic skin phenotype. In addition, our microarray data indicated that PUVA downregulated miR-27a and miR-29a (Fig. 4), uncovering its correlation in the regulatory networks of PUVA. miRs are known as essential controllers of cell fate decisions in immune responses. They act by coordination and repression of multiple target genes. miR-27a has been identified as an inhibitor of Th2 cell differentiation and function, thereby limiting IL-4 production in T cells and the network that regulates IL-4...
production (55). Knocking down miR-27a significantly downregulates expression levels of TNF-alpha and IL-6 via reducing the phosphorylation level of NF-κB p65. Moreover, miR-27a neutralization with anti-miR-27a hairpin downregulates TNF-alpha expression, which is consistent with our cytokine results (Fig. 3) (56). In addition, the role of miR-29a is well documented in association with extracellular matrix (ECM) induction (31). miR-29a overexpression in murine hepatic stellate cells resulted in downregulation of collagen expression, thereby directly targeting the mRNA expression of ECM genes (57). Collagen-associated genes were significantly expressed, possibly due to downregulation of miR-29a. PUVA also downregulated the Acer2 gene that regulates sphingolipid metabolism and the S1P signalling pathway (58). S1P has attracted attention for its effects in promoting cell proliferation and survival in psoriasis (30, 59, 60).

In conclusion, this study identifies the potential dual action of phototherapy. Simultaneous treatment, in particular with PUVA, was able to suppress established psoriatic inflammation. In addition, pretreatment with phototherapy (before administration of IMQ) was able to suppress the susceptibility of murine skin to mount a psoriatic inflammation. This action of phototherapy may, in addition to the direct elimination of keratinocytes (20) and lymphocytes (61), be relevant in humans, because it suppresses the continuous response to endogenous or exogenous psoriatic triggers that act through the TLR pathway, which is responsible for the initiation and persistence of the disease (62). The current mechanistic study indicates that PUVA-induced senescence, along with downregulation of IL-9, IL-17 and IFN-γ, may make cells less susceptible to stimulation by IMQ, resulting in less psoriatic inflammation and hyperplasia.

ACKNOWLEDGEMENTS

The authors thank Jenifer Ober, Flow Cytometry Core Facility, Center for Medical Research (ZMF), Medical University of Graz, and Gerlinde Mayer, Department of Dermatology and Venereology, Medical University of Graz, for their technical support in processing the samples. The authors also thank Gertrude Krainz for English language corrections. This work was supported by the Austrian Science Fund FWF (W1241) and the Medical University of Graz through the PhD programme DK-MOLIN.

The authors declare no conflicts of interest.

REFERENCES

