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SIGNIFICANCE
Onychomycosis is a common nail infection. One diagnostic 
method is the histopathological examination of nail clip-
pings, which is labour intensive. Use of artificial intelligence 
is emerging in medicine, but it is not yet used for the histo-
logical diagnosis of onychomycosis. A deep learning system 
was developed for diagnosis of onychomycosis using scan-
ned sections of nail clippings. In 199 cases the diagnostic 
accuracy of the artificial intelligence was compared with 
that of dermatopathologists. The system can be used to 
assist dermatopathologists and can reduce the workload in 
everyday routine. Similar systems may also be developed 
to detect fungal organisms in skin biopsies for the diagno-
sis of tinea.

Onychomycosis is common. Diagnosis can be confirmed 
by various methods; a commonly used method is the 
histological examination of nail clippings. A deep lear-
ning system was developed and its diagnostic accuracy 
compared with that of human experts. A dataset with 
annotations for fungal elements was used to train an 
artificial intelligence (AI) model. In a second dataset 
(n=199) the diagnostic accuracy of the AI was compa-
red with that of dermatopathologists. The results show 
a non-inferiority of the deep learning system to that of 
analogue diagnosis (non-inferiority margin 5%) with 
respect to specificity and the area under the receiver 
operating characteristic curve (AUC). The AI achieved 
an AUC of 0.981. One limitation of this system is the 
need for a large number of training images. The AI had 
difficulty recognizing spores and confused serum or ag-
gregated bacteria with fungal elements. Use of this deep 
learning system in dermatopathology routine might 
help to diagnose onychomycosis more efficiently.

Key words: artificial intelligence; deep learning; onychomyco-
sis; dermatopathology.
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Onychomycosis is a fungal infection of the nails, 
which occurs in approximately 10% of the general 

population, with half of affected people being over 70 
years of age. Patients present with discoloured nails, 
thickened nail plate, and onycholysis (1). The infectious 
agents differ depending on geographical region; in North 
America and Europe dermatophytes are the causative pat-
hogens in 65% of cases, followed by yeasts in 21%, and 
non-dermato phyte moulds in 13% (2). The predominant 
dermatophyte causing onychomycosis is Trichophyton 
rubrum (3).

Diagnosis and appropriate treatment of onychomycosis 
is important, as it may prevent progression to tinea pedis 
and help to avoid severe complications, such as erysipelas 
(4). Not uncommonly it is clinically relatively difficult 
to differentiate onychomycosis from other nail diseases, 
such as nail psoriasis or nail involvement in lichen planus. 
However, the treatment of onychomycosis is different 

from that of inflammatory diseases of the nail apparatus. 
If the clinical presentation is extensive or refractory to 
topical therapies, systemic treatments, such as terbinafine 
and itraconazole, are indicated, but possible side-effects 
and interactions with other medications need to be con-
sidered and the correct diagnosis has to be proven (5).

There are several methods used to diagnose mycoses: 
potassium hydroxide (KOH) preparation or fluorescent-
assisted direct microscopy of nail scrapings, culture, 
histological examination of formalin-fixed, paraffin- 
embedded nail clippings stained with periodic acid–
Schiff reaction (PAS stain) represent conventional, 
widely used methods, while molecular diagnostics 
using PCR techniques and mass spectrometry are more 
recent approaches, which are not yet widely available 
(6). Compared with a conventional diagnostic standard 
method (KOH), the sensitivity of the molecular diagnostic 
method PCR-based sequencing, was high, at 97% (7). A 
combination of culture and histopathological examination 
with PAS stain reaches 94% sensitivity. However, routine 
histopatho logical examination with PAS stain was 85% 
sensitive vs culture on Sabouraud agar with chloram-
phenicol and cycloheximide (Mycosel agar) with 32% 
sensitivity. Histo logical examination of nail clippings 
still appears to be a very sensitive method for diagnosing 
onychomycosis, which is easily performed, atraumatic, 
and the results are available relatively quickly (8).

In recent years, artificial intelligence (AI) methods for 
histopathological image analysis have become increa-
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singly popular (9). These methods are typically based 
on deep learning (9–12), a subfield of machine learning. 
Deep learning systems most often use so-called convolu-
tional neural networks (CNNs), which comprise several 
layers of artificial neurones or nodes (13) connected to 
each other via weights. While traditional computer vision 
techniques involve designing hand-crafted analysis rules, 
and often fail to generalize to the variances present in 
medical images, machine learning approaches learn diag-
nostically relevant features by looking at the statistics 
present in training images. In the last decade, they have 
been shown to perform with high accuracy in a wide 
variety of tasks and domains in healthcare, including 
clinical imaging, electronic health records, genomics and 
health applications for mobile devices (14–17). 

The first application of deep learning to histopathology 
was the detection of mitoses in haematoxylin and eosin 
(HE)-stained sections (18). Many other applications 
have followed in general histopathology, from detecting 
lymph node metastases in breast cancer (19) over gastric 
carcinoma (20) to the detection of nuclei in tissue (21). 
In dermatopathology, there have been few approaches so 
far; e.g. for the histopathological diagnosis of melanoma 
and basal cell carcinoma (22, 23). 

With regard to the clinical diagnosis of onychomycosis 
and AI, a group in Seoul studied the accuracy of binary 
classification of clinical photographs of nails as showing 
or not showing onychomycosis (24). They used almost 
50,000 clinical images of previously diagnosed cases to 
train a deep learning system. In a study of clinical diag-
nosis of onychomycosis, their AI system outperformed 
dermatologists. A different later study also focused on 
clinical photographs of nails (25). However, in addition 
to clinical assessment, a second diagnostic procedure is 
needed for the diagnostic process to unequivocally prove 
the infection in the tissue. Accurate identification of the 
micro-organism, e.g. by microscopy of histopathological 
PAS-stained sections of nail clippings, is required before 
the prescription of systemic treatment which may have 
severe side-effects. 

Given the increasing importance of use of AI in 
dermatology and pathology, and the high frequency of 
onychomycosis in dermatological practice, together with 
an increasing workload of pathologists worldwide, this 
study aimed to develop AI for recognition of fungal or-
ganisms in scanned whole-slide images of PAS-stained 
sections of nail clippings. To assess the performance 
of the AI it was compared with the diagnoses made by 
dermatopathologists working on the same PAS-stained 
sections using a conventional microscope. 

MATERIALS AND METHODS

Samples

This monocentric study, conducted in the histopathological depart-
ment of the Dermatologikum Hamburg, used 2 different datasets. 

The first dataset comprised 528 cases and was used for training 
the AI. The second dataset comprised 199 cases and was used 
to study the diagnostic accuracy of the AI and compare it with 
the performance of 4 dermatopathologists with different levels 
of experience. The samples were collected retrospectively and 
chosen randomly from the years 2018 to 2020. Inclusion criteria 
were a clinical suspicion of onychomycosis and histopathological 
analysis of a nail clipping as diagnostic method. Exclusion criteria 
were composed of air under the cover slip, a displaced cover slip, 
and no visible nail fragment on the PAS-stained slide. The study 
material (n = 199) came from 104 male and 95 female patients and 
the mean age was 54 (range 18–89) years. Specimens came from 
toenails in 169 cases (right foot n = 70, left foot n = 70, both feet 
collective sample n = 29) and from fingernails in 12 cases (right 
hand n = 6, left hand n = 5, both hands collective sample n = 1). No 
site was given in 18 cases. 

All patients had given informed consent to the procedure of 
nail clipping and diagnosis by microscopy at the time of clinical 
presentation. This study was approved by the local ethics com-
mittee (Ärztekammer Hamburg, Hamburg, Germany) (processing 
number: WF-178/20). 

The nail samples were fixed in formalin and processed in paraf-
fin. Sections of 4-µm thickness were stained with Artisan Link 
Pro Special Staining System, an in vitro diagnostic device for 
automated special stains on formalin-fixed, paraffin-embedded 
tissue sections. (serial number ALP812080; Agilent Technolo-
gies Deutschland GmbH, Waldbronn, Germany). The Artisan 
Periodic Acid Schiff Stain Kit (number AR165; Firma Agilent 
Technologies; Deutschland GmbH, Waldbronn, Germany) was 
used according to the manufacturer’s instructions.

Scanning

Samples were scanned with a resolution of 0.25 µm/pixel, resulting 
in digital whole-slide images (WSI) of the tissue (approximate size 
100,000×100,000 pixels). The scanners 3DHistech Pannoramic 
SCAN II and 3DHistech Pannoramic P1000 (Sysmex, Hamburg, 
Germany) were used with the following scanning profile: Scanner 
Pannoramic SCAN II, 3D Histech, Objective type 20×, Output 
resolution 37×, Focus, distance 15FOVs, Source Brightfield, Spe-
cimen threshold Auto // 220, Multilayer Mode Extended focus, 
Levels 7, Step Size 5 (0.2 µm), Image quality Good, Compres-
sion JPEG, Bit, depth 8 bit and stitching ON. Scans were fully 
automatic, with subsequent manual checks that all tissue had been 
covered. For 8 object plates with little material, Roche Ventana DP 
200 (Roche Diagnostics, Washington, USA) was used, because 
it had a higher performance in focusing on small areas of tissue. 
Sections were anonymized for the scanning process.

Deep learning model

A CNN model was designed for image analysis of histopathologi-
cal nail tissue. A CNN consists of a series of layers of computatio-
nal units that calculate a cascade of image features of increasing 
complexity. The most abstract features are used to compute the 
final analysis. The parameters (weights) of the computational 
units are optimized during AI training, based on example images. 

The CNN architecture is similar to VGG-13 (26), but introduces 
dilation to the convolution operations. Dilation allows the kernel 
size to be increased without increasing the amount of parameters 
needed. This enables the incorporation of more fine-grained in-
formation from larger context fields at the individual convolution 
stages without increasing the model complexity. The CNN used 
in the current study consists of 13 convolution layers with kernels 
of size 4 and a dilation factor increasing with the network depth.

The CNN takes a “patch”, a small image of size 256×256 pixels, 
as input, processes it and provides a probability estimate between 
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0% and 100% about the patch containing onychomycosis. The 
magnification used for patches is 0.25 µm/pixel. To make pre-
dictions for a full whole-slide image (with a size of approximately 
100,000×100,000 pixels), the WSI is split into patches (Fig. 1). 
The CNN makes predictions for all patches. These predictions are 
aggregated to obtain a final decision for the WSI. Aggregation is 
computed by taking the 10 patches with the highest onychomycosis 
probabilities into account, calculating their average probability 
and subsequently applying a threshold in order to obtain a binary 
decision for the WSI. The optimal threshold is determined on the 
validation data of the training dataset: it is set to the value that 
achieves the optimal split between positive and negative validation 
cases, based on their aggregated probabilities. 

Data and annotations

A dataset of 528 WSI was used to train the CNN. Samples consisted 
of 286 positive (with fungus) and 242 negative (without fungus) 
cases. Positiveness was determined by an experienced dermato-
pathologist. The positive cases include 11 cases that were initially 
marked as negative, but had to be corrected to be positive after the 
AI found small hyphae structures that were later confirmed by the 
human experts (there were no cases that were initially marked as 
positive and had to be corrected to negative.).

For training, negative patches were taken at random from 
the negative WSI. Positive WSI contain patches both with and 
without hyphae. To determine positive patches from the positive 
WSI, hyphae structures were annotated on positive samples by a 
dermatology resident, using a few dots per hypha. Annotations 
were not exhaustive, but only a small number of hyphae (1–30) 
were marked on each positive case. Annotations were made using 
the software Automated Slide Analysis Platform (ASAP) 1.9 
(Computational Pathology Group, Radboud University Medical 
Center, Netherlands, https://computationalpathologygroup.github.
io/ASAP/). In a later additional, so-called active learning, step, 
the CNN identified patches in the positive samples that did not yet 
have annotations, and about which it was particularly uncertain 

whether onychomycosis was present. These patches were label-
led by the human expert, using an unpublished proprietary patch 
classification software tool, and then added to the training dataset. 
All annotations were reviewed and confirmed by an experienced 
dermatopathologist, resulting in annotations being confirmed 
independently by 2 human experts.

Deep learning training procedure

For the patch-based approach, training WSI were partitioned 
into patches by overlaying a grid and extracting patches with a 
resolution of 256×256 pixels (Fig. 2). As it is difficult and labour 
intensive to annotate positive patches in large numbers, a self-
supervised learning approach was adopted. In a pre-learning step, 
this enables the learning of a good pre-initialization of the CNN 
parameters, consisting of general image features without the need 
for any annotations (27, 28). In a subsequent supervised learning 
step, the CNN is fine-tuned based on the annotated patches. For 
training, the data were split into a development (80%) and a valida-
tion (20%) set with slide holdout. The validation set was used to 
optimize the learning procedure. The Adam optimizer, with a lear-
ning rate of 0.0001 and rotation and colour image augmentations, 
was used. Background areas without tissue in training images were 
removed using standard computer vision filtering (Otsu mask). 

Study evaluation 

For evaluation of the AI performance, 199 new samples were col-
lected from Dermatologikum Hamburg, Hamburg, Germany. This 
dataset does not include any samples that were used for AI training. 
The ground truth (the gold standard) as to whether samples were 
positive or negative was determined by 2 dermatopathologists, 
who reviewed the PAS-stained sections independently and 
agreed on all diagnoses, dividing them into negative and positive 
classes. For 49 uncertain negative cases, PCR examination for 
dermatophyte-specific DNA on the same paraffin block was used 
to confirm negativity. Cases were anonymized with numbers 

Fig. 1. Upper row: different patches with 
hyphae and their hyphae probabilities 
predicted by artificial intelligence (AI). 
Lower image: whole-slide image of the 
periodic acid–Schiff (PAS)-stained nail 
specimen. Red squares: location of 
numbered patches. Magnification: 400x 
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chosen randomly by a computer. The WSI were analysed by the 
AI. For comparison, the original tissue slides were analysed with 
a conventional microscope by 4 different dermatopathologists 
of different levels of experience. Two dermatopathologists are 
full-time dermatopathologists with several years of experience, 
and the other 2 recently completed their specialist training in der-
matopathology. None of the dermatopathologists had participated 
in the annotation process; and none of them was involved in the 
determination of the ground truth. 

The aim of this confirmatory diagnostic accuracy study was 
to determine whether diagnosis of onychomycosis by software 
using AI is not inferior to an analogous diagnosis by dermato-
pathologists.

Statistical analysis

For a given case, the AI estimates a probability for the presence of 
onychomycosis. Using a cut-off value of 91% (previously estab-
lished in the training dataset), these results are dichotomized into 
positive (> 91%) or negative (≤ 91%). The primary hypothesis is 
that the diagnostic accuracy of AI, as measured by the area under 
the curve (AUC), sensitivity and specificity, is non-inferior to the 
diagnostic accuracy of human diagnosticians. The non-inferiority 
limit was set a priori at 5% absolute. Because sensitivity and 
speci ficity are co-primary endpoints, the type I error does not need 
to be corrected for multiplicity here. However, since the AUC is 
considered as an additional primary endpoint, the type I error was 
corrected according to the Bonferroni method. This results in a 
2-sided type I error of 2.5% for all 3 hypotheses and corresponding 
2-sided 97.5% confidence intervals for primary analyses.

First, for descriptive analysis the receiver operating charac-
teristics curve (ROC curve) for the continuous AI probability 
was calculated. Furthermore, AUCs are given with associated 
2-sided 95% logit confidence intervals. After dichotomizing the 
AI probability (with 91% as cut-off; see above), sensitivity and 
specificity were calculated for the different diagnoses, again with 
the corresponding 2-sided 95% logit confidence intervals.

For the primary analysis, a non-parametric factorial model with 
the 2 fixed factors method (AI vs analogous) and dermatopatho-
logist (nested under method = analogous) was used (29). From 
this model, the mean sensitivity, specificity, and AUC of the 4 
dermatopathologists were calculated. For dichotomous evalua-
tion the AUC is equal to the arithmetic mean of sensitivity and 
specificity as an aggregated measure. Then, the differences in the 
sensitivities, specificities, and AUC (mean analogous minus AI) 
and the corresponding 2-sided 97.5% Wald confidence intervals 
were calculated. If the upper limit of the respective confidence 
interval was below the non-inferiority margin of 5% absolute, the 
corresponding non-inferiority null hypothesis could be rejected. 
In secondary analyses, the predictive values with corresponding 
2-sided 95% logit confidence intervals were calculated. For the 
analysis, SPSS 25 (Statistical Package for Social Science, IBM 
(Armonk, New York, USA)) and the statistical software R (30) 
including the R package “diagnostic 0.4.2” (31) were used.

RESULTS

Of the total 199 samples, onychomycosis was present in 
101 and not present in 98; a prevalence of 51%. There 

Fig. 2. Overview over artificial intelligence (AI) training and study. (a) A total of 528 periodic acid–Schiff-stained whole-slide images (WSI) were 
used for AI training. Markers for hyphae are shown as red dots (only for visualization of the annotations; red dots are not part of the actual training 
images). (b) Positive and negative patches were extracted for training from the WSI. (c) A convolutional neural network (CNN) was trained that predicts 
for a patch whether onychomycosis is present. (d) A total of 199 new WSI were used to study the performance of the AI in comparison with human 
experts. (e) To make an AI prediction for a WSI, the WSI was partitioned into patches. (f) The CNN is now fixed. (g) It predicts a probability for each 
patch independently. (h) All patch predictions were aggregated into a single probability estimate for the WSI.



A
ct

aD
V

A
ct

aD
V

A
d
v
a
n

c
e
s 

in
 d

e
rm

a
to

lo
g
y
 a

n
d
 v

e
n

e
re

o
lo

g
y

A
c
ta

 D
e
rm

a
to

-V
e
n

e
re

o
lo

g
ic

a

5/8Deep learning approach for histopathological diagnosis of onychomycosis

Acta Derm Venereol 2021

were no missing values. Fig. 3 shows the ROC curve 
of the AI probability and the pairs of sensitivity and 
specificity of the dermatopathologists. Table I shows 
the individual AUCs, sensitivities and specificities with 
corresponding 2-sided 95% logit confidence intervals (CI 
lower, CI upper). This shows that there are 2 dermato-
pathologists (1 and 2) who achieve a higher AUC and 
specificity, while 2 dermatopathologists (3 and 4) ac-
hieve a lower AUC and specificity than the AI, while 
all dermato pathologists achieved a higher sensitivity 
than the AI.

The results of the primary analyses are shown in 
Table II. The AI achieved an AUC operator curve of 
98.1% (CI 96.1–99.8%) based on AI probabilities. After 
dichotomizing the AI, the mean analogous sensitivity of 
the dermatopathologists was 3.2% higher than the sensi-
tivity of the AI (CI –2.3%; 8.8%), while the mean analo-
gous specificity was 3.3% lower than the specificity of 
the AI (CI –7.8%; 1.2%). The AUC of the dichotomized 
AI and analogue AUC was similar (difference –0.1%, CI 
–3.6%; 3.5%). This means that non-inferiority of the deep 
learning system to the analogue diagnosis by histopatho-
logists was shown with respect to AUC and specificity, 
but not with respect to sensitivity. Fig. 4 shows patches 
that were misclassified by the AI.

In Table III, the results of the secondary analyses 
regarding the positive predictive value (PPV) and the 
negative predictive value (NPV) are provided. Interrater 
agreements of dermatopathologists among each other 
and with respect to the AI model are shown in Table IV.

DISCUSSION

Onychomycosis is a common nail infection. Nail clip-
pings for microscopic diagnosis make up a considerable 
number of specimens in dermatopathology laboratories. 
Searching hyphae in PAS stained sections is a tedious 
task if the number of micro-organisms in the specimen is 
low. Moreover, as standard of care, multiple PAS-stained 
sections often have to be examined. This takes time, 
which a dermatopathologist could better use for more 
difficult diagnoses, e.g. in melanocytic lesions or inflam-
matory skin diseases, where weighting of criteria and 
integration of clinical context requires human expertise. 
With the increasing importance of AI in medicine and 
a high workload in pathology laboratories, AI-assisted 
systems for diagnosis are an interesting approach. 
Detecting onychomycosis represents a difficult task 
from an image recognition perspective. Target structures 
can occur only very sparsely in a whole-slide image, 
meaning that they can easily be missed. Furthermore, 
artefacts and bacteria particles can resemble hyphae 
and thus introduce false-positive cases that need to be 
identified correctly. 

The current study developed an AI model, based on 
a CNN, for recognition of fungal organisms in scanned 
whole-slide images of PAS-stained sections of nail clip-
pings, using training data compiled by 2 human experts. 
Seeking to develop a robust AI model that generalizes 
well across different whole-slide images and does not 
overfit on target structure characteristics, self-supervised 
learning was first performed to gain a good initializa-
tion of the network weights of the CNN. The resulting 

Fig. 3. The receiver operating characteristic (ROC) curve shows that 
the onychomycosis probabilities predicted by artificial intelligence 
(AI) allow it to sort cases on an accuracy level comparable to that 
of human experts.

Table I. Areas under the curve (AUCs), sensitivities and specificities with corresponding 2-sided 95% logit confidence intervals (low, up)

AUC AUC low AUC up Sens., % Sens. low, % Sens. up, % Spec., % Spec. low, % Spec. up, % 

Dermatopathologist 1 0.995 0.965 0.999 100 100 100 99 93.11 99.9 
Dermatopathologist 2 0.980 0.948 0.993 97 91.1 99 99 93.1 99.9 
Dermatopathologist 3 0.914 0.866 0.946 95 88.6 97.9 87.8 79.6 92.9 
Dermatopathologist 4 0.949 0.909 0.973 97 91.1 99 92.9 85.7 96.6 
AI with probabilities 0.981 0.961 0.998 – – – – – –
AI with dichotomized probabilities 0.960 0.922 0.980 94.1 87.4 97.3 98 92.2 99.5 

AI: artificial intelligence; Sens: sensitivity; Spec: specificity. Non bold is the corresponding 2-sided 95% logit confidence intervals.

Table II. Differences in sensitivities and specificities with 
corresponding 2-sided 97.5% Wald confidence intervals (low, up)

AI with 
dichotomized 
probabilities

Analogous 
(mean) 

Difference 
(An. – AI) Diff. low 

Diff. 
up 

Sensitivity 94.1% 97.3% 3.2% –2.3% 8.8% 
Specificity 98.% 94.6% –0.033 –7.8% 1.2% 
AUC 0.9601 0.9596 –0.001 –0.036 0.035 

AI: artificial intelligence; AUC: area under the curve.
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network was then fine-tuned with supervised learning, 
based on the annotated training data.

The performance of the AI was evaluated on a second 
test set, consisting of entirely new cases. To set the 
“ground truth”, this test set was reviewed by 2 expe-
rienced dermatopathologists, and a large proportion of 
negative cases were also confirmed with PCR testing. The 
diagnoses made by the AI were compared with the diag-
noses made by 4 other dermatopathologists of different 
levels of experience examining the same PAS-stained 
sections using a conventional microscope. A slight dis-
cordance was found between the dermato pathologists, 
which corresponded to their different levels of expe-
rience. Two dermatopathologists with several years of 
experience performed slightly better than the AI, while 
the AI performance was slightly superior to the other 2 

dermatopathologists who had recently completed 
dermatopathology training. The results show that 
the AI was non-inferior to the dermatopathologists 
with regards to specificity and accuracy (AUC). 
However, non-inferiority regarding sensitivity could 
not be proven. We conclude that this AI system is 
equal to human experts.

High specificity of the AI is important, because, as 
mentioned previously, a diagnosis of onychomyco-
sis may require systemic treatment with terbinafine 
or itraconazole (5), which can have severe side-
effects. Onychomycosis should always be proven 
by demonstration of the micro-organism by a con-
firmatory method prior to systemic treatment, and 
this confirmation can be established by our AI. The 
AI is forced to present patches containing hyphae 
with the highest probability, even if present in a 
very small fragment. In a practical setting, the AI 
developed in this study could be used as a screen-
ing tool, presenting patches in the slide with areas 
suspicious for hyphae, which could then quickly be 
confirmed by a dermatopathologist. Such a system 
would also be of help to residents in training or less 
experienced dermatopathologists, who naturally 
have higher rates of error.

Only one study has previously addressed AI-
assisted histopathological diagnosis of onychomy-
cosis (32). A main difference from the current study 

was that neural network scanning was used to provide 
assistance for the pathologists, while, in our system, the 
AI learned to diagnose cases autonomously. Moreover, 
the technical background has evolved significantly since 
then, enabling higher quality of scanning and the use of 
deep learning. A recent study showed that a deep learning 
algorithm can surpass human knowledge in diagnosing 
melanoma, and that one of the reasons may be that AI 
can identify image features that are disregarded or not 
discernible by the human expert (33). This hypothesis 
may also be valid for the current study, because, in some 
cases, the algorithm outperformed the humans. This was 
already seen during the training phase, in which the AI 
identified suspicious areas in supposedly negative slides, 
which in 2 supplementary control steps were confirmed 
by an experienced dermatopathologist as positive. 

A further advantage of the use of AI is the time sa-
ving, since traditional microscopic examination is time-
consuming. An example is a deep learning approach for 
diagnosis of malaria (34). A similar binary approach 

Fig. 4. Illustration of patches that were misclassified by artificial 
intelligence: (A–F) false-positives; (G–I) false-negatives. (A and B) Serum. 
(C) Overlay of nail fragments. (D and E) Bacteria in linear arrangement. (F) 
Remnants of neutrophils in zones of parakeratosis. (G and H) Hyphae were few 
and the area was not completely focused in the scan. (I) Hyphae were mainly 
crosscut. Magnification 400x.

Table III. Predictive values with corresponding 2-sided 95% logit 
confidence intervals

PPV, 
%

PPV 
low, 
%

PPV 
up, 
%

NPV, 
%

NPV 
low, % 

NPV 
up, 
%

Dermatopathologist 1 99.0 93.5 99.9 100.0 100.0 100.0
Dermatopathologist 2 99.0 93.4 99.9 97.0 91.6 99.0
Dermatopathologist 3 88.9 83.8 92.5 94.5 89.6 97.2
Dermatopathologist 4 93.3 88.1 96.4 96.8 91.4 98.9
AI with dichotomized 

probabilities
97.9 92.8 99.4 94.1 88.5 97.1

PPV: positive predictive value; NPV: negative predictive value. Non-bold is the 
corresponding 2-sided 95% logit confidence intervals.

Table IV. Inter-rater agreements of dermatopathologists among 
each other and with respect to the artificial intelligence (AI) model

Dermatopathologist 2 3 4 AI

1 98.0% 90.5% 94.0% 95.0%
2 – 91.5% 93.0% 94.0%
3 – – 90.5% 88.4%
4 – – – 91.0%

Bold highlights the AI in contrast to the pathologists.
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was used to determine benign or malignant epithelial 
neoplasia, where accuracy and workflow efficiencies 
could be improved by computer-aided diagnostics (35).

Limitations
One of the limitations of using AI for analysing medical 
images is the need for a large number of training ima-
ges (24). The current study training set comprised 528 
whole-slide images; however, it was only feasible to 
annotate a small fraction of hyphae in each positive case. 
Self-supervised learning was used to counterbalance 
this. It was noticed that the AI had no difficulty correctly 
identify the hyphae, which are basically elongated pink 
structures. However, the AI could not easily recognize 
the spores, which are found more commonly in infec-
tions with Candida albicans. Another difficulty was 
that the AI confounded serum particles or aggregation 
of bacteria with fungal elements; however, beginner 
histopathologists encounter the same difficulties. When 
hyphae are cut transversely, they are seen as tiny round 
structures, which can be simulated by serum or bacterial 
aggregations. In this situation, a conventional microscope 
offers the advantage of focusing through the 4-µm cut, 
which helps to identify hyphae correctly. Sometimes 
overlays and dirt or overstaining posed difficulties for 
the AI. Since all sections came from the same laboratory, 
stainings were relatively even. When applied to sections 
stained in different laboratories, the AI could initially 
encounter difficulties. Finally, the cost of the AI equip-
ment may be a limitation; the scanner and software can-
not be afforded by every laboratory.

Conclusion
Previous studies of AI in dermatopathology have shown 
that CNNs can be applied in various domains, such as 
routine diagnostics, education and research. However, 
more prospective studies are required to confirm the 
previous findings (26). 

By using a common disease, AI was successfully 
trained in solving the binary problem of detecting ony-
chomycosis in nail clippings. This study showed that 
the use of AI on whole-slide images is statistically non-
inferior regarding AUC and specificity compared with 
dermatopathologists using a conventional analogous 
setting with a microscope. A potential application of 
the current AI model could be as support software that 
screens whole-slide images and highlights suspicious 
areas to the pathologist. These results may also lead 
to other possible uses of AI in dermatopathology. PAS 
stains used routinely in every biopsy of an inflammatory 
dermatosis could be screened for fungal organisms using 
a similar AI system. Important advantages are the possi-
bilities of time saving and the chance to reduce incorrect 
diagnosis due to time pressure, high workload, or lack of 
experience in dermatopathological routine. The current 

study demonstrates that AI systems provide promising 
opportunities as assisting tools in dermatopathology. A 
follow-up study is planned, to evaluate the current AI 
model on PAS-stained slides from other laboratories and 
for use of both nail clippings and skin.
The authors have no conflicts of interest to declare.
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