A New Staining Method for Visualization of Keratin Filaments in Hair Fibre Cross Sections

BO FORSLIND and MARGARETHA ANDERSSON

Experimental Dermatology Research Group, Department of Medical Biophysics, Karolinska Institute, Stockholm, Sweden

A new method of staining the keratin filament matrix allowing a visualization of the filaments in cross section of hair fibres has been developed. It differs from previously published methods in that the hair fibres are neither fixed with OsO$_4$ nor treated with sulfur bond breaking agents. High contrast is still obtainable in sections thicker than 60 nm. Key words: Electron microscopic staining.

(Accepted December 3, 1990.)


M. Andersson, EDRG, Department of Medical Biophysics, Karolinska Institute, S-104 01 Stockholm, Sweden.

The keratin filament size and organization was investigated by transmission electron microscopy already three decades ago. Special techniques involving the reduction of cystein disulfide bonds were developed to visualize the low sulfur filament structures embedded in the random coil proteins of the sulfur rich matrix (1,2). The remarkable physical strength of hair fibres were later shown to be related to the filament organization and the cellular architecture of the cortex and cuticle cells (3,4). Such information provides a background for the understanding of disorders involving changes in keratin formation and cellular adhesion.

We report here a new method for the visualization of keratin fibris in hair fibre cross section in unfixed specimens avoiding the protein degradation effects of osmium tetroxide (OsO$_4$) and reductive or oxidative substances aiming at breaking disulfide bonds.

MATERIAL AND METHODS

Hair fibres were plucked from healthy persons in the age range 40-56 years. Specimens for the experiments were taken close to the follicle end of the fibre to ensure least possible influence of environmental factors on the physical chemical properties of the hair. Wool fibres from a Swedish strain of sheep were selected with corresponding criterions.

Hair snippets were either immersed in 2.5% glutaraldehyde in phosphate buffer at ambient temperature and subsequently post-fixed in 2% OsO$_4$, for one hour, with appropriate rinses in distilled water. Alternatively the water-swelled specimens were taken directly to dehydration in graded ethanol before embedding in Vestopal. Sections were cut on a LKB Ultrotome fitted with a diamond knife and at a nominal thickness of 60 nm. Sections were stained with aqueous solutions of uranyl acetate and lead. Electron microscopy was performed on a Philips EM 301-G with a 25 µm gold objective aperture at primary magnifications of 10,000, 17,000 and 22,000 x.

RESULTS

In comparison with specimens fixed in glutaraldehyde and OsO$_4$, the unfixed specimens yielded far better detail in the keratin fibre. The best contrast was obtained in relatively thick sections, or section areas thicker than the nominal 60 nm (Fig. 1). The keratin filaments, known from X-ray diffraction studies to have a diameter of approximately 8 nm, were depicted as rounded open spaces in a stained, structureless matrix. The helical arrangement of filaments in the bundles (3) is clearly demonstrated by the “fingerprint whorl patterns” seen in the cross sections. Cellular envelopes (“membranes”) are well delineated. There are no signs of filamental structures in the cuticle.

![Fig. 1. Cross section of a non-fixed human hair fibre. Section stained with uranyl acetate and lead. Note the "fingerprint whorl pattern" at 3]. Bar: 0.1 µm.
ruption of disulfide bonds. Details such as the so-called "finger-print whorl pattern" indicating a helical arrangement of filaments in the bundles are clearly seen in our micrographs. Like previously used preparation methods our technique does not allow visualization of the straight, cuticle filaments. The contrast in hairs fixed in glutaraldehyde and subsequently post-fixed with OsO₄ was remarkably low compared to the unfixed specimens. The logical conclusion is that the cross-linking induced by the glutaraldehyde fixation prevents the uranyl acetate to interact with the proteins to any appreciable extent. Therefore the subsequent staining with lead which mainly is deposited on the uranyl also fails to contribute to the contrast.

At electron microscopy we have found that the best contrast is obtained in sections thicker than 60 nm (600 Å). Due to the difficulty of sectioning hair we recommend that the nominal thickness is set to approximately 60 nm for the best result. If the nominal section thickness is set to 100 nm or more such thick sections tend to burn under the impact of the electron beam. Our experience is that a thicker part of a "thin" section generally will be more stable during electron microscopy than homogeneously thick (>100 nm) sections. Our new preparation method has the advantage of involving few health hazards. The main chemical used, an aqueous solution of uranyl acetate, is not volatile and hence no health hazard to any person involved.

ACKNOWLEDGEMENTS
We are indebted to the Funds of the Karolinska institute, The Finsen foundation and the Welander Foundation for generous financial support.

REFERENCES