Generalized Morphea with Vascular Involvement

A Case Report and Disaccharide Analysis of the Skin Glycosaminoglycans

S. AKIMOTO, O. ISHIKAWA, Y. YOKOYAMA, H. AMANO and Y. MIYACHI

Department of Dermatology, Gunma University School of Medicine, Maebashi, Japan

We report a 69-year-old man with severe generalized morphea, who showed over 80% of skin involvement, while the internal organs were not affected. We performed histological examinations and analysis of skin disaccharides constituting chondroitinase-digestible glycosaminoglycans in the center and periphery of the sclerotic lesions and the clinically uninvolved skin. In both the central and peripheral parts of the sclerotic lesions, sclerotic fibrosis and a dense perivascular cell infiltration, consistent with morphea, were seen in the entire dermis and subcutis. Furthermore, various vascular changes were observed, such as endothelial cell swelling, thickened basement membrane and obstruction of vascular lumen in the fat lobules. In the clinically uninvolved skin, interstitial edema was prominent along with a slight perivascular cell infiltration. On disaccharide analysis, the increase in the amount of ΔDi-4S (DS), the main disaccharide unit of dermatan sulphate, ΔDi-6S and ΔDi-6S, the main disaccharide units of chondroitin sulphate, and the decrease in ΔDi-HA, which is derived from hyaluronate, were found not only in the sclerotic lesions but also in the clinically uninvolved skin, though less prominent. These alterations were consistent with systemic sclerosis, suggesting a close relationship between severe forms of generalized morphea and systemic sclerosis. Key words: vascular change; interstitial change; systemic sclerosis.

(Accepted September 15, 1995.)

Acta Derm Venereol (Stockh) 1996; 76: 141–143.

S. Akimoto, Department of Dermatology, Gunma University School of Medicine, 3-39-22, Showamachi, Maebashi, Gunma 371, Japan.

Morphea or localized scleroderma is a localized form of scleroderma characterized by sclerotic skin plaques with an ivory-colored center and a surrounding violaceous halo (1). Since Raynaud's phenomenon or sclerodactyly is rare in patients with morphea, it is generally considered to be a different entity from systemic sclerosis (SSc) that features a systemic connective tissue disorder in the skin and other organ systems.

When the lesion is widespread and multiple, the disease is defined as generalized morphea (GM) (2,3). Unlike SSc, GM usually lacks visceral involvement. We here report a severe form of GM with special reference to the histological study and the disaccharide analysis of the skin glycosaminoglycans (GAGs), both in the center and periphery of the sclerotic lesions and in the clinically uninvolved skin.

CASE REPORT

A 69-year-old Japanese male patient visited our department with 16 months' history of multiple sclerotic plaques in April 1994. He had often been exposed to kerosene and petroleum from the age of 22 to 46, and to volatile adhesive agents from 48 to 60. He first noticed an asymptomatic erythema on the abdomen in December 1992. During the subsequent 10 months, multiple erythematous lesions appeared on his trunk and extremities. He had never been aware of Raynaud's phenomenon. He was admitted to our department under the diagnosis of GM. Physical examination revealed multiple sclerotic plaques of variable sizes with a symmetrical distribution involving more than 80% of the body surface. His scalp, face, feet and fingers were spared. Each lesion showed an ivory-white sclerotic plaque surrounded by violaceous erythema with ichthyotic scale. Abnormal results in routine laboratory examination were as follows: WBC count 10,400/mm³, serum complement hemagglutinin test level 60 IU/ml (normal value, 30–45), IgG 2088 mg/dl (770–1700), IgA 515 mg/ml (90–450). Tests for antinuclear antibody, anti double-stranded and single-stranded DNA, anti RNP, anti Sm, anti Ro, anti Scl-70, anti centromere, anti SS-A and SS-B antibodies and anti Buller's antibody were all negative. Other hematologic tests and blood chemistry tests were normal. On capillary microscopic examination, the patient's nail fold capillary showed a pattern compatible with that of SSc. We could find no abnormality in chest radiograph, pulmonary function test or esophageal function test.

Treatment with bucillamin, 300 mg q.d.s., was started, resulting in the gradual improvement of the sclerotic skin.

Histological examination

Three skin specimens were obtained from the extensor surface of the patient's forearm, exactly from the center and the periphery of the sclerotic lesion and from clinically uninvolved skin. Each specimen was divided into two pieces, one for histology and the other for biochemical analysis. Three site-matched skin samples from healthy individuals or non-SSc patients were studied as controls for biochemical analysis.

Both in the peripheral (Fig. 1b) and central (Fig. 1c) parts, hyaluronanized collagen bundles in the dermis and subcutaneous fat tissue were noted. Dense perivascular mononuclear cell infiltrations were also observed, which were more prominent in the peripheral part than in the central part. Additionally, remarkable vascular changes were noted. The endothelial cells of the blood vessels in the entire dermis were swollen. There were extravasations of erythrocytes in the upper dermis (Fig. 2a), and furthermore, the lumen of the blood vessels in the residual subcutaneous fat tissue were occasionally obstructed with the proliferation of vessel wall cells (Fig. 2b).

In the clinically uninvolved skin, interstitial edema of the dermis and a slight perivascular cell infiltration were noted, whereas collagen bundles were apparently normal (Fig. 1a). Alcian blue staining (pH 2.5) demonstrated the deposition of GAGs in the interstitial space.

Disaccharide analysis of GAGs

The disaccharide analysis was performed using the previously described method (4–6). ΔDi-6S and ΔDi-4S (CS), the main disaccharide units of chondroitin sulphate, and ΔDi-HA, which is derived from hyaluronate, were determined as unsaturated disaccharides liberated with chondroitinase AC digestion. ΔDi-4S (DS), the main disaccharide unit of dermatan sulphate, was calculated by deducting the above ΔDi-4S (CS) from the total ΔDi-4S liberated with chondroitinase ABC digestion. The values obtained were expressed as amount per mg dry skin.

In the central part, all disaccharide units but ΔDi-HA were increased, and ΔDi-HA was decreased as compared with normal controls, which was consistent with our previous results of SSc (5). In the peripheral part, a similar tendency was found. Although the amount of ΔDi-HA was at the same level, there was less of ΔDi-6S, ΔDi-4S (CS) and ΔDi-4S (DS) than in the central lesion. Subsequently, during the progress of sclerosis, the amount of ΔDi-6S, ΔDi-4S (CS) and ΔDi-4S (DS) increased, while the amount of ΔDi-HA showed no
change. Even in the clinically uninvolved part, an increase in
\(\Delta \text{Di-4S} \) (DS) and a decrease in \(\Delta \text{Di-HA} \) were noted, the values being
between the patient's lesions and the control skin (Fig. 3).

DISCUSSION

Endothelial cell injury is thought to be important in the
pathogenesis of SSc (8–12). Raynaud's phenomenon, a
common feature of SSc and possibly one of the premonitory
symptoms of SSc (13), has been supposed to cause endothelial
cell injuries (14,15). However, most patients with morphea
lack Raynaud's phenomenon. The vascular changes in morphea
have rarely been pointed out (3). Ishikawa & Mori (16)
reported that the vascular changes in some patients with
morphea were similar to SSc. In electron microscopic examination
of morphea, Kobayasi & Serup (17) reported the enlargement
of endothelial cells and pericytes and the thickening of
basal lamina, though endothelial cell destruction was not
found. Thus they concluded that the most essential change in
morphea was the activation of pericytes transformed into
myofibroblasts. They proposed that pericytes capable of regulating
blood flow in small vessels might inhibit the ordinary blood flow,
with a resultant increase in their secretory function when they
are transformed into myofibroblasts. As no electron microscopic
examination was performed in our case, we could
only demonstrate that the vascular changes were similar to
SSc, based on the findings of the routine histopathology and
capillary microscopy. However, the obstruction of vascular
Fig 3. The composition of main disaccharides in the forearm skin.

<table>
<thead>
<tr>
<th>Disaccharide Content (μg/ml)</th>
<th>Controls (n=3)</th>
<th>Patient</th>
<th>Clinically Uninvolved Part</th>
<th>Peripheral Part</th>
<th>Central Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH-6S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADI-4S (CS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADI-4S (DS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADH-HA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar indicates mean ± SD.

lumen in subcutaneous fat lobules, as observed in our case, has rarely been found in SSc. Thus, we assume that these vascular changes are unusual and may play important roles in the development of the disease.

We previously reported that the distribution pattern of the main disaccharide in SSc was different from that of scars or normal controls (4). In the present study, the disaccharide analysis revealed a similar pattern with SSc (4,5). It was of note that the content of ADI-4S (DS) increased in accordance with the progression of sclerotic changes. An electron microscopic study revealed that collagen fibrils in normal skin are bridged or anchored by proteoglycans (glycosaminoglycan-protein complex) (18). Vogel et al. demonstrated that small dermal saltate proteoglycans of bovine tendon specifically inhibit fibrinogen of both type I and type II collagens (19). These results suggest a close interaction of collagen fibrils and proteoglycans. Taking these reports into consideration, we suggest that the altered GAG metabolism may be closely related to the abnormal collagen metabolism, though it remains unclear whether this change is a primary or secondary event. Furthermore, it is of great interest that the clinically uninvolved skin showed abnormal disaccharide contents. This may suggest that systemic skin changes like SSc will occur in GM.

Localized scleroderma is generally assumed to be different from SSc. However, the progression to SSc (20), or the coexistence with SSc (21) in localized scleroderma, suggests a common pathologic background in localized scleroderma and SSc. The two diseases may represent two ends of a continuous spectrum of the disease such as systemic and cutaneous lupus erythematosus. Our case may represent the intermediate case of localized scleroderma and SSc.

Localized scleroderma (22) and SSc (23) have been observed in human patients after exposure to organic solvents. Our patient had been exposed to organic solvents 9 years before the onset of the disease. Although there was a long interval, we cannot deny the possibility that those agents were the provoking factor in our case.

REFERENCES