Expression and Function of CD43 and CDw60 on T Cells from Patients with Atopic Dermatitis

NAOYUKI HIGASHI1,2, KAIDA WU1, CHRISTIAN GRØNHØJ LARSEN1, METTE DELEURAN1, SEIJI KAWANA2, KAZUYA YAMAMOTO3 and KRISTIAN THESTRUP-PEDERSEN1

Department of Dermatology, 1Marselisborg Hospital, University of Aarhus, Aarhus, Denmark, 2Nippon Medical School, Tokyo, Japan, and 3Aiiku Hospital, Tokyo, Japan

Acta Derm Venereol 2001; 81: 263–267

Expression of CD43 and CDw60 was originally defined by the UM4D4 monoclonal antibody (mAb), which was generated against T-cell lines and clones from synovial fluid and tissue from patients with rheumatoid arthritis (RA), where CDw60 is strongly expressed on T cells. Since then, CDw60 has been shown to be highly expressed on T-lymphocytes and keratinocytes in psoriatic skin lesions, and on peripheral blood mononuclear cells (PBMC) from patients with cutaneous T-cell lymphoma (15–18). The natural ligand for CDw60 is still unknown, but the anti-UM4D4 mAb has been found to bind to the O-acetylated form of ganglioside GD3 (19).

The aim of this study was to determine whether CD43 and CDw60 expression and function were changed on PBMC, CD4+ and CD8+ T lymphocytes taken from patients with AD.

MATERIALS AND METHODS

Patients and controls

Blood samples were obtained from 13 patients (9 men and 4 women; mean age 33 years, range 24–47 years) with AD according to the criteria of Hanifin & Rajka (20). Seventeen healthy persons (11 men and 6 women; mean age 42 years, range 25–55 years) served as controls. The patients received only topical treatment; none received systemic immunosuppressive therapy. Blood samples were also taken from a man and a woman aged 25 and 31 years, respectively, who prior to blood sampling had been treated for 1 month with azathioprine 100 mg/day for AD. Informed consent was obtained prior to inclusion in the study, which was approved by the Ethics Committee of Aarhus County.

Cell staining and flow cytometry

PBMCs were isolated by density gradient centrifugation on Lymphoprep (Nycomed, Oslo, Norway). CD4+ and CD8+ T cells were positively purified from PBMC using magnetic microspheres in accordance with the manufacturer’s instructions (Dynal, Oslo, Norway). One million PBMCs, CD4+ or CD8+ T cells in Hanks’ balanced salt solution (HBSS) with 1% fetal calf serum (FCS) were incubated with 20 μl FITC-conjugated anti-CD43 mAb (DF-T1) or anti-CDw60 mAb (M-T41) (both Becton Dickinson, Brøndby, Denmark) for 30 min at 4°C. The cells were then washed twice in HBSS with 1% FCS and fixed in 100 μl 4% paraformaldehyde-HBSS for 15 min at 4°C. Finally, cells were washed twice in HBSS with 1% FCS and resuspended for analysis in 500 μl of HBSS with 0.5% paraformaldehyde. Flow cytometry was carried out using EPICS XL-MCL (Coulter, Luton, UK) in accordance with routine procedures.

The purity of the CD4+ and CD8+ T-cell subsets was measured in 4 samples from patients with AD and controls using antibodies from DAKO, Copenhagen. The purity was similar for patients and healthy persons, and was on average 96% with the lowest value being 92.3%.

Cell stimulation with anti-CD43 or CDw60 antibody

Lymphocyte proliferation assay was performed as previously described (21). A total of 100,000 CD4+ or CD8+ T cells was incubated in 96-well flat-bottomed plates (Nunc, Roskilde, Denmark) in 200 μl of RPMI-1640 with glutamax (Life Technologies, Paisley, UK) supplemented with 2% FCS, 10 μg/ml penicillin G, 100 μg/ml streptomycin, and 25 μg/ml gentamycin. In pilot assays we studied the concentrations of antibodies and phorbol 12-myristate 13-acetate (PMA) (Sigma, St.
Louis, MO) as well as incubation time. We selected the optimal culture conditions, i.e. 5 μg/ml of anti-CD43 mAb (DF-T1, Immunotech, Marseille, France), or 2.5 μg/ml of anti-CDw60 mAb (UM4D4, Harlan Sera-Lab Ltd., Loughborough, UK), either without or in combination with 2.5 ng/ml of PMA. Culture time was 72h at 37°C in 5% CO₂. During the final 18 h of culture, the cells were pulsed with 1 μCi of [³H]thymidine, following which they were harvested according to routine methods using a semiautomated cell harvester (Skatron, Lier, Norway). Counting was done in a liquid scintillation counter (Packard Instrument, Meriden, CT) and mean counts per minute (cpm) of triplicate cultures were calculated.

Cell aggregation assay for CD43

Aggregation assays were carried out as described (22) with slight modifications. One million CD4+ or CD8+ T cells were plated in a 96-well flat-bottomed plate with the addition of 5 μg/ml of anti-CD43 mAb (DF-T1) for 24 h, following which the cells were resuspended by pipetting up and down 20 times. The cells were then stained with 0.2 μg/ml of CD43 mAb (DF-T1) for 24 h, following which the cell suspension was added to the well-bottomed plate with the addition of 5 μg/ml of PMA. Culture time was 72 h at 37°C in 5% CO₂. During the final 18 h of culture, the cells were pulsed with 1 μCi of [³H]thymidine, following which they were harvested according to routine methods using a semiautomated cell harvester (Skatron, Lier, Norway). Counting was done in a liquid scintillation counter (Packard Instrument, Meriden, CT) and mean counts per minute (cpm) of triplicate cultures were calculated.

Statistical analysis

We performed Wilcoxon’s signed rank test for paired data and the Mann-Whitney U-test for unpaired data using statistical software (Statview, Abacus Concepts Inc, Berkeley, CA). Values of p < 0.05 were considered of significance. All results are presented as mean ± 1 SD.

RESULTS

Phenotype measurements

The results from flow cytometry analysis of PBMC, CD4+ and CD8+ T-cell subsets are given in Tables I and II. We observed a significant increase of CD43 expression on PBMC (p < 0.03), but not on CD4+ and CD8+ T cells from patients with AD. CD4+ and CD8+ T cells had the same percentage of CD43+ cells, with no difference between the patients with AD and the controls. Also, the mean fluorescence intensity (MFI) of CD43 expression in PBMC, CD4+ and CD8+ T cells did not differ between the patients with AD and the controls (data not shown). Interestingly, azathioprine treatment led to a reduction in CD43 expression on both the CD4+ (from 91.9% to 76.8%) and CD8+ (from 94% to 77.3%) subsets of T cells from patients with AD.

CDw60 expression did not differ between the patients with AD and the controls. Although CD43 was equally expressed on both CD4+ and CD8+ T cells, CDw60 was not. It was, rather, expressed significantly less on CD8+ T cells than on CD4+ T cells in AD (CD4/CD8 ratio, p < 0.05). The MFI of CDw60 expression in PBMC, CD4+ and CD8+ T cells also did not differ between the patients with AD and the controls (data not shown). Again, azathioprine treatment led to a substantial reduction of CDw60 expression on CD4+ (from 50.8% to 33.9%) and CD8+ (from 35.3% to 17.8%) T cells from patients with AD.

Function of CD43 and CDw60 expression

We then stimulated purified subsets of CD4+ and CD8+ T cells with either anti-CD43 or anti-CDw60 antibodies ± the addition of PMA. The use of highly purified T-cell subsets led to a low cpm count not comparable to what was seen in PMA stimulation of PBMC, where monocytes are present. The results are presented in Table III. In contrast to the normal controls, we observed that anti-CD43 mAb stimulation led to a higher proliferation of CD4+ T cells, but not of CD8+ T cells in AD. PMA stimulation significantly increased the proliferation of both T-cell subsets, but further addition of anti-CD43 mAb did not cause any further increase. However, AD T cells had significantly higher responses to PMA than did T cells from normal healthy controls (p < 0.03). Anti-CDw60 mAb stimulation did not induce a significant proliferation of T cells from either patients with AD or controls.

Although we analysed the correlation between the expression of CD43 (MFI, the percentage of positive cells) and the cell proliferation results, we could not observe any meaningful correlations in patients with AD and in controls. Also, in

Table I. **CD43 positive cell percentages in peripheral blood mononuclear cells (PBMC) and isolated CD4+/CD8+ T-cells (mean ± SD)**

<table>
<thead>
<tr>
<th></th>
<th>PBMC (%)</th>
<th>CD4+ (%)</th>
<th>CD8+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>85.5 ± 4.6 (n = 6)</td>
<td>90.7 ± 5.9** (n = 13)</td>
<td>94.4 ± 3.2 (n = 13)</td>
</tr>
<tr>
<td>Patients with AD</td>
<td>92.1 ± 3.4* (n = 6)</td>
<td>91.9 ± 8.2 (n = 12)</td>
<td>94.0 ± 5.1 (n = 12)</td>
</tr>
<tr>
<td>AD treatment with azathioprine</td>
<td>– 76.8 ± 18.5 (n = 2)</td>
<td>77.3 ± 18.8 (n = 2)</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.03 vs. controls.

**p < 0.03 vs. CD8+ T-cell in controls.

AD = atopic dermatitis.

Table II. **CDw60 positive cell percentages in peripheral blood mononuclear cells (PBMC) and isolated CD4+/CD8+ T-cells (mean ± SD)**

<table>
<thead>
<tr>
<th></th>
<th>PBMC (%)</th>
<th>CD4+ (%)</th>
<th>CD8+ (%)</th>
<th>CD4/CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>50.7 ± 17.3 (n = 6)</td>
<td>48.2 ± 13.2 (n = 13)</td>
<td>40.2 ± 16.3 (n = 13)</td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td>Patients with AD</td>
<td>52.2 ± 13.0 (n = 6)</td>
<td>50.8 ± 8.1 (n = 12)</td>
<td>35.3 ± 13.5 (n = 12)</td>
<td>1.6 ± 0.5*</td>
</tr>
<tr>
<td>AD treatment with azathioprine</td>
<td>– 33.9 ± 1.8 (n = 2)</td>
<td>17.8 ± 0.9 (n = 2)</td>
<td>1.9 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05 vs. controls.

AD = atopic dermatitis.
Table III. The results of lymphocyte proliferation assay* (mean ± SD)

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Control (n = 6)</th>
<th>Patients with AD (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD4+ T-cell</td>
<td>CD8+ T-cell</td>
</tr>
<tr>
<td>Medium</td>
<td>78 ± 12</td>
<td>79 ± 25</td>
</tr>
<tr>
<td>Anti-CD43 mAb</td>
<td>100 ± 31</td>
<td>113 ± 46*</td>
</tr>
<tr>
<td>Anti-CDw60 mAb</td>
<td>87 ± 30</td>
<td>76 ± 22</td>
</tr>
<tr>
<td>PMA</td>
<td>860 ± 285</td>
<td>2754 ± 3172</td>
</tr>
<tr>
<td>PMA + anti-CD43 mAb</td>
<td>984 ± 398</td>
<td>3706 ± 3461</td>
</tr>
<tr>
<td>PMA + anti-CDw60 mAb</td>
<td>1021 ± 461</td>
<td>2819 ± 3136</td>
</tr>
</tbody>
</table>

* Lymphocyte proliferation assay were carried out using [3H] thymidine incorporation.
* *p < 0.03 vs. medium in CD8+ T-cell from controls.
* **p < 0.05 vs. medium in CD4+ T-cell from patients with AD.
† p < 0.03 vs. CD4+ T-cells from controls.
†† p < 0.01 vs. CD4+ T-cells from controls.
††† p < 0.05 vs. CD4+ T-cells from controls.
p < 0.03 vs. CD8+ T-cells from controls.

The results of lymphocyte proliferation assay indicate that stimulation with anti-CD43 mAb could enhance the proliferation of CD4+ T cells drawn from patients with AD, suggesting that a large population of antigen-specific CD4+ T cells can highly express CD25 molecules in patients with AD. This is in accordance with a previous report in which a high expression of CD25 was observed in circulating T cells from patients with AD (24). In the result of cell aggregation assay, CD4+ T cells from healthy controls showed a significantly higher degree of aggregation than CD8+ T cells (p < 0.03) (Table IV), but there was no difference between patients with AD and healthy controls. There is no obvious correlation between the degree of cell aggregation and MFI or the percentage of CD43 positive cells was seen in either patients with AD or control subjects.

DISCUSSION

This study is the first to analyse the expression of CD43 and CDw60 phenotypes on PBMC and on CD4+ versus CD8+ T cells drawn from patients with AD. We observed a significant increase in CD43 expression in PBMC from patients with AD, but not in purified T-cell subsets. This finding indicates that it is likely that CD43 expression is increased among the monocytes or natural killer T cells. The stimulation of CD4+ T cells with anti-CD43 mAb led to a significantly higher proliferation of CD4+ T cells. In a previous report it was found that the signalling via CD43 can induce IL-2 production and up-regulation of CD25 expression in T cells, and that autocrine production of IL-2 can then induce T-cell proliferation (23). In another report it was found that CD43 enhances the antigen-specific activation of T cells (2). Thus our results, in which stimulation with anti-CD43 mAb could enhance the proliferation of CD4+ T cells drawn from patients with AD, indicate that a large population of antigen-specific CD4+ T cells can highly express CD25 molecules in patients with AD. This is in accordance with a previous report in which a high expression of CD25 was observed in circulating T cells from patients with AD (24). In the result of cell aggregation assay, CD4+ T cells from healthy controls showed a significantly higher degree of aggregation than CD8+ T cells (p < 0.05), while the percentage of CD43-positive CD4+ T cells from healthy controls increased compared with CD8+ T cells (p < 0.03). There is a negative correlation between CD43 expression and cell aggregation in T cells from healthy controls, but not from AD. This is in accordance with a previous report in which CD43 has also been documented to have negative effects on T-cell adhesion (14). These findings seem to exclude the possibility that there is a faulty expression or function of CD43 on either mononuclear or T-cell subsets in patients with AD, as has been observed for Wiskott-Aldrich syndrome.

Kruse et al. have recently reported that CD43 polymorphisms (R337C, L341F) in atopic subjects were not associated with altered IgE responsiveness, but concluded that the polymorphisms R337C and L341F adjacent to phosphorylation sites in the intracellular region of CD43 should be elucidated (25). Further study of monocytes, NK cells and some populations of B cells in CD43 may provide new evidence.

Meanwhile, the expression and function of CDw60 did not differ between the patients with AD and the healthy subjects. In patients with AD, CDw60 was present on more CD4+ T cells than CD8+ T cells. It was interesting to see, as a preliminary observation, how azathioprine treatment led to a substantial reduction in the expression of both CD43 and CDw60. This points to the fact that these markers are necessary for normal T-cell reactivity.

Azathioprine, which is a common immunomodulatory drug, has been available for not only various skin diseases, such as pemphigoid, pemphigus, chronic actinic dermatitis, AD and dermatomyositis, but also for RA and multiple sclerosis (26, 27). During treatment with azathioprine in patients with
RA, the percentage of CD4+ T cells increased, and the total number of lymphocytes decreased (28). Also, Salmaggi et al. have reported that both the CD4/CD8 ratio and the percentage of CD4+ CD45RA+ T cells increased in multiple sclerosis patients treated with azathioprine (29). However, so far, no relationship between CDw60 and treatment with azathioprine has been observed. Since a high expression of CDw60 was reported in T cells from RA synovial fluid, our result suggests that the clinical effect of azathioprine on RA may be partially associated with the down-regulation of CDw60 expression on activated CD4+ and CD8+ T cells. On the other hand, although we did not observe an enhanced expression of CDw60 in PBMC, CD4+ or CD8+ T cells from patients with AD, the clinical improvement of AD after treatment with azathioprine may also be partially associated with a reduced CDw60 expression in the T cells. In addition, CDw60+ CD8+ T cells have recently been characterized as secreting high levels of IL-4 and as providing B-cell helpers for IgG and IgA synthesis such as the Th2 type (30, 31). Thus azathioprine can inhibit IL-4 production from CDw60+ CD8+ T-cell in AD.

Isolated CD4+ and CD8+ T cells from patients with AD showed dramatically higher proliferative activity than those from controls when T cells were stimulated with either PMA alone or PMA in combination with anti-CD43 mAb or anti-CDw60 mAb. A depressed lymphocyte response to T-cell mitogen in vitro has been described in AD and has been related to the elevated monocyte's production of PGE_2, which enables inhibition of mitogen-induced lymphocyte proliferation (32, 33). In accordance with previous reports, our observations suggest that isolated CD4+ and CD8+ T cells, which were depleted of monocytes from PBMC in AD, showed a higher cell proliferative response to PMA stimulation as compared with control subjects.

Although the biological significance of our observations is not immediately evident, many phenotypes and functions are upregulated in AD, including CD43. Future studies should concentrate on new potential markers for the immunological disturbance observed in patients with AD (34).

ACKNOWLEDGEMENTS

We are grateful for the co-operation of Danish patients with atopic dermatitis. This work was supported by generous grants from the Velux Foundation, the NOVO-NORDIC foundation and the Institute of Clinical and Experimental Research, University of Aarhus. We thank LEO Pharmaceutical Research Foundation for its generous support of Dr. Naoyuki Higashi.

REFERENCES

23. Axelsson B, Yousefi-Etemad R, Hammarstrom S, Perlmann P.

