Identification of Herpes Simplex Virus DNA and Lack of Human Herpesvirus-8 DNA in Mycosis Fungoides

Emel Erkek, Nilgün Sentürk, Irem Dinçer, Ali Ilgın Olut, Tanıl Kocagöz, Gül Bükülmel and Sedef Sahin

Departments of Dermatology and Clinical Microbiology, Hacettepe University Faculty of Medicine, Neyzen Tevfik Sokak, Ferah Apt., 12/12 Maltepe, TR-06570 Ankara, Turkey. E-mail: emelerkek@hotmail.com

Accepted February 22, 2002.

Sir,

Human herpesvirus 8 (HHV-8) is the most recent putative human herpesvirus. Evidence was obtained using molecular biology techniques (1). Specific DNA sequences were first identified in 1994 by Chang et al. (2) in Kaposi’s sarcoma tissues from patients with AIDS using the representational difference analysis technique. In the vast majority of cases, HHV-8 DNA sequences can be shown by polymerase chain reaction (PCR) in classical, endemic, iatrogenic and AIDS-associated Kaposi’s sarcoma (1). HHV-8 is also lymphotrophic and has the ability to immortalize cells (3, 4). The virus has been associated with peripheral T-cell lymphomas, plaque parapsoriasis, lymphomatoid papulosis and cutaneous T-cell lymphomas (CTCL), including mycosis fungoides (MF) (5–7). Herpes simplex virus (HSV) primarily targets epithelial and neural cells rather than lymphocytes. However, given the immunologic relationship between T lymphocytes and the epidermis, and the fact that MF often appears to be initiated as a cutaneous process, a potential role for HSV in the development or progression of MF has been suggested (8).

The purpose of this study was to elucidate a potential role for HHV-8 and HSV in the etiopathogenesis of MF.

MATERIAL AND METHODS

Fifty formalin-fixed paraffin-embedded samples from lesional skin of 50 Caucasian patients with MF were selected and retrospectively collected from archival files of the Pathology Department. In a previous study performed in our department, these biopsy samples have been shown by PCR to be EBV negative (9). In all patients, the skin biopsies have been obtained during initial admission to hospital, before initiation of any form of therapy. Forty-three of the 50 patients were diagnosed as MF erythematosus stage (38%); 4 were stage IA (38%), 3 were stage II (50%) and 6 were stage IIA (12%). Control skin samples were obtained from normal skin of 20 healthy individuals undergoing elective plastic surgery.

The patient and control samples were studied by PCR for the presence of HSV and HHV-8. All samples showed human β-globulin gene amplification by PCR, indicating the absence of major PCR inhibitors. The primers used in this study were first described by Chang et al. (2), and were specific for HHV-8. 5′TCCGTGGTTGTCTACGTCGAG3′ was used as the first primer, and 5′AGCCGAAAGGATTCCACCAT3′ as the second. A positive control containing HHV-8 DNA was obtained from patients with HIV-associated Kaposi’s sarcoma. For HSV, a target region of 342 base pairs between the 2348th and 2689th bases was selected on the viral genome: (HSV gB 2a-1) 5′ CTG GTC AGC TTT CGG TAC GA 3′; and (HSV gB 2a-2) 5′ CAG GTC GTG CAG GTG GTT GC 3′. These primers have been amplifying both types of HSV, namely types I and II. As a positive control specimen, cerebrospinal fluid of a patient with a clinical and serologically proven HSV encephalitis was used.

RESULTS AND DISCUSSION

Using PCR, we were able to amplify DNA specific for HSV from 16 of 50 MF patients (32%). Thirteen out of 16 HSV-positives samples were diagnosed as MF erythematous stage and 3 were MF plaque stage. All samples lacked HHV-8 DNA by PCR. Neither HSV nor HHV-8 was detected in any of the control specimens. The representative positive PCR results are shown in Figs 1 and 2.

HHV-8 is usually together with EBV as a dual infection in body cavity lymphomas, AIDS-related non-Hodgkin’s lymphomas and in non-malignant lymphoid lesions (10, 11). In HIV+ patients, EBV and HHV-8 associated CTCL have been reported to take anaplastic large cell morphology (12). However, there was no evidence for the presence of EBV (9) and HHV-8 in lesional samples of our patients. This finding is in accordance with that of previous studies (5–7, 13–15) revealing the absence of HHV-8 in MF and suggesting that HHV-8 can be excluded from the list of potential etiological factors in MF.

The presence of both HSV-specific antigens and HSV DNA in lesions of CTCL has been reported previously (16, 17). However, no direct association between chronic HSV infection and the development of malignant lymphoma has been confirmed to date. Braziel et al. (18) could not detect any HSV positivity among 30 patients with CTCL, 9 patients with lymphomatoid papulosis and 10 patients with pityriasis lichenoides et varioliformis acuta. In contrast, our study revealed the presence of HSV DNA in 16 of 50 (32%) lesional biopsy samples. There are previously reported cases of chronic, disseminated and fatal cases of HSV infections in CTCL, including MF (19, 20). The presence of HSV within MF lesions might reflect the immunodeficiency secondary to advanced disease or to immunosuppressive treatment. However, cutaneous biopsies in our study were obtained before therapy and none of the samples belonged to patients with advanced tumoral or erythrodermic MF. We believe that the role of HSV as an initiator or promoter in CTCL is worth investigating, and further
Fig. 1. PCR amplification of HSV-specific 342 bp DNA fragment in patients with mycosis fungoides (MF). M: molecular DNA weight marker; +: positive control for HSV; lane 1: negative control; lanes 2, 3, 4, 6, 7: negative patient samples; lane 5: positive HSV PCR amplification of a patient with MF.

Fig. 2. PCR amplification of HHV-8 in patients with mycosis fungoides. M: molecular DNA weight marker; +: positive control for HHV-8; −: negative control; lanes 1, 2, 3, 4: negative patient samples.

studies in lesional and non-lesional biopsy specimens from patients with MF are awaited.

REFERENCES


Cutaneous Sarcoidosis of the Scrotum: A Rare Manifestation of Systemic Disease

Susan S. McLaughlin, Allison M. Linquist, and Joseph W. Burnett
Department of Dermatology, University of Maryland School of Medicine, 405 West Redwood St., 6th Floor, Baltimore, MD 21201, USA. E-mail: ssmclaugh@hotmail.com
Accepted February 22, 2002.

Sir,
Sarcoidosis is a systemic granulomatous disease of unknown etiology that can affect various organs, such as the skin, lungs, heart, and eyes, as well as the lymph nodes. Although cutaneous findings in sarcoidosis may occur at any stage in the disease, they usually occur at the onset of disease. Skin lesions are present in up to 37% of patients (1). Cutaneous sarcoidosis is classified as specific (caused by non-caseating granulomas infiltrating the skin) and non-specific or reactive (such as erythema nodosum) (1). Although any part of the cutaneous surface may be involved, reports of genital sarcoidosis are rare. We describe an unusual case of cutaneous sarcoidosis involving the scrotum and penis.

CASE REPORT
A 37-year-old African American male presented with a 3-month history of an extensive, pruritic, eczematous eruption of the scrotum, with associated edema and tenderness. Clusters of dark papules and plaques had developed on his face one month previously. The patient described having recent fevers, intermittent nausea and vomiting, difficulty urinating, and occasional wheezing but denied persistent shortness of breath. He had no family history of sarcoidosis.

Physical examination revealed an obese, hoarse man with multiple pink-to-violaceous annular papules and plaques on the face (lupus pernio), neck, arms, gluteal cleft, penis, and scrotum. No oral lesions were noted. Shotty, inguinal lymphadenopathy was noted bilaterally. The scrotum was massively enlarged, to approximately 18 cm in diameter, diffusely tender, and lichenified (Fig. 1). The penis was twice normal size and diffusely edematous.

Massive thickening of the scrotal wall was detected on ultrasound examination of the scrotum. The testes, epididymis, and blood vessels were normal. Mediastinal and hilar lymphadenopathy was evident on chest roentgenogram. Results of pulmonary function tests were not available. No abdominal or pelvic lymphadenopathy was detected by computed tomography scan of the abdomen and pelvis. Direct laryngoscopic examination revealed nodular laryngeal and subglottal involvement. The serum angiotensin-converting enzyme level was elevated at 98 U/l (normal range, 20–60 U/l). A complete blood count, liver function panel, blood urea nitrogen, creatinine, and serum calcium and protein levels were all normal.

Fig. 1. Lichenified pink-to-violaceous papules and plaques cover the massively enlarged scrotum, which showed no improvement after a course of oral prednisone.