INTRODUCTION

In the history of psoriasis pharmacotherapy, the milestone developments have largely occurred by chance. Serendipitous observations in single patients have led to the discovery of such important treatments as methotrexate (1), deltandoids (active form of vitamin D and its analogues) (2), cyclosporin (3) and, most recently, tumour necrosis factor alpha (TNF-α) inhibitors (4). While these observations have been of therapeutic importance, they have also had a major impact on current views on the pathogenesis of this skin disease. From the initial model, where the hyperproliferation of epidermal keratinocytes was considered to be a central event, the current understanding places the immune system at the hub of the pathogenic series of events. Vigorous research and constantly increasing insight into the mechanisms of psoriasis have led to the identification of a number of potential targets for therapeutic intervention. For the first time, the rational, mechanism-based development of new anti-psoriatic therapeutic has become a reality.

The purpose of this article is to present a systematic review of emerging drug therapies for psoriasis that, although in the early stage of development today, may enter the clinical practice of tomorrow. The current, established treatments are not mentioned; readers are referred to recently published excellent reviews on this subject (5–8). The compounds included in this review have been selected from a screening of the Medline records; where references are not cited the information has been obtained from IDdb (Investigational Drugs Database, Current Drugs Ltd., http://www.iddb3.com/) and PharmaProjects (PJP Publications Ltd. 2002, http://www.pharmaprojects.co.uk).

IMMUNOSUPPRESSIVE AND ANTI-INFLAMMATORY DRUGS

The autoimmune cutaneous reaction is believed to play a causative role in the development of skin lesions in psoriasis (9). Most of the compounds under current development for psoriasis belong to different classes of immunosuppressives and anti-inflammatory drugs. The central cell in the current pathogenic model is the memory (CD45RO+) T-lymphocyte mediating the type 1 immune response. A type 1 immune response is mediated by Th1 and Tc1 lymphocytes secreting a specific cytokine profile (IFN-γ, TNF-α, IL-12). The recently reviewed immunopathogenesis of psoriasis (9, 10) will be mentioned only to the extent necessary for an understanding of the mechanism of action of the drugs included here. The memory T-lymphocytes secrete three major cytokines, IL-2, TNF-α and IFN-γ. IL-2 acts at the early stages of T-cell activation and clone expansion, while TNF-α and IFN-γ have a twofold role: to drive and stabilize the type I immune reaction (11) and by direct action on keratinocytes to stimulate their growth leading to epidermal hyperproliferation (12). The latter aspect is believed to be an aberrant regenerative response of the epidermal stem cells (12, 13).

Immunomodulation. Current therapeutic strategies involve suppression of the type I autoimmune reaction and/or immunomodulation aimed at shifting from the type I to type II immune response. The proof of concept of the latter strategy has been provided in studies demonstrating a beneficial role of type II lymphokines in psoriasis patients. IL-10 (14–16) and IL-11 (17, 18) are type II cytokines whose efficacy has been proved in small, preliminary clinical trials. Another approach is vaccination with killed Mycobacteria (19) or manipulation at the signal transduction level by affecting the activity of the transcription factors responsible for the T-cell differentiation (GATA 3, HLX, p38 MAPK, junB, c-maf) (20). In particular, the modulation of p38 MAPK can now be accomplished by synthetic molecules. Currently developed immunomodulatory agents are summarized in Table I.

Immunosuppression. Many currently used antipsoriatic drugs, such as methotrexate, cyclosporin, fumaric acid
esters, azathioprine or mycophenolate mofetil belong to this group. Although, as described below, current efforts aim at the development of specific immunosuppressive drugs, there is also considerable new progress within the non-specific immune-suppressing agents (Table II). Ascomycins and tacrolimus, whose mechanism of action resembles that of cyclosporin (22), have been developed for topical use in inflammatory skin diseases. They seem to work in atopic dermatitis, but their activity in psoriasis is relatively low and requires occlusion for optimal efficacy (23). These drugs might be useful, however, for certain clinical types of psoriasis, such as inverse psoriasis, where preliminary evidence of topical tacrolimus has been presented (24). An interesting development in systemic immunosuppressive drugs has been the introduction of purine nucleoside phosphorylase (PNP) inhibitors (25). PNP is essential for T-cell proliferation and cellular immune response. Currently, the main targets for PNP inhibitors are rheumatologic autoimmune diseases and Crohn’s disease and the antipsoriatic activity has not been tested in clinical trials. Other systemic immunosuppressive drugs with their mechanisms of action are summarized in Table II.

The main effort of most of the pharmaceutical industry has been towards the development of specific immunosuppressive agents. Recent developments in biotechnology, such as the large-scale production of humanized, primatized or purely human antibodies (27), and advances in the anti-sense approach (28) have made the development of such agents possible. The easiest but least attractive way is to delete the subpopulation of T-cells participating in the autoimmune reaction. Selective T-cell depletion, such as that achieved by a fusion toxin protein DAB389IL-2 (depletion of activated T-cells expressing IL-2 receptor) works, but the side effects are severe and prolonged immunosuppression can occur (29, 30). A smarter approach is a reversible

Table I. Immunosuppressive drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Status for psoriasis</th>
<th>Mode of action/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplom dimaleate (AnorMED)</td>
<td>Preclinical</td>
<td>Azaspirane immunomodulators of unclear mechanism of action, developed mainly for rheumatoid arthritis. The azaspiranes demonstrated activity in adjuvant arthritis and in several transplant models.</td>
</tr>
<tr>
<td>T-cell switch factor (Boston Life Sciences)</td>
<td>Preclinical</td>
<td>Gene therapy targeting the T<sub>H</sub>1/T<sub>H</sub>2 switch factor, c-Maf. Affects the balance between type 1 and type 2 immune response.</td>
</tr>
<tr>
<td>PVAC (Corixa)</td>
<td>Phase II</td>
<td>Heat-killed Mycobacterium vaccae for intradermal administration. Works probably via skewing the immune response towards type 2. A study (21) of 20 patients with moderate to severe psoriasis showed that 65% showed marked improvement in the PASI (>50% reduction).</td>
</tr>
<tr>
<td>Interleukin-10 (Schering-Plough)</td>
<td>Phase II</td>
<td>A recombinant IL-10 shown to ameliorate psoriasis due to skewing the immune response from type 1 to type 2 (15, 16).</td>
</tr>
<tr>
<td>Interleukin-11 (Neumega<sup>®</sup>) (Wyeth)</td>
<td>Preclinical</td>
<td>Human recombinant interleukin-11 showing promise in the therapy of psoriasis (17, 18).</td>
</tr>
<tr>
<td>BIRB-796* (Boehringer-Ingelheim)</td>
<td>Phase II</td>
<td>Selective p38 MAPK inhibitors developed for rheumatoid arthritis, psoriasis and Crohn’s disease. In animal models shown to suppress type 1 immune response by inhibiting TNF-α and IL-1β.</td>
</tr>
<tr>
<td>RWJ-67657 (Johnson & Johnson)</td>
<td>Preclinical</td>
<td></td>
</tr>
<tr>
<td>T-cell receptor peptides (Xoma)</td>
<td>Preclinical</td>
<td>Synthetic T-cell receptor peptides for the treatment of autoimmune diseases, mostly multiple sclerosis. The peptides suppress specifically the activity of pathogenic T-lymphocytes.</td>
</tr>
</tbody>
</table>

*Chemical structure not disclosed.
function blocking of T-cells. This has been achieved mostly by directly targeting the critical surface proteins involved in the process of T-cell activation or by blocking the critical type I cytokines. Targeted surface molecules are mostly those involved in the interactions between T-cells and antigen-presenting cells (Table III). An approach that has already shown promise is the function blocking of type 1 cytokines (31, 32). During the immune response, there seems to exist a positive feedback loop of type I cytokines where IL-12 augments IFN-γ release; IFN-γ in turn stimulates TNF-α release and TNF-α upregulates itself (33). IL-6 is another pro-inflammatory lymphokine involved in type I immune reactions and overexpressed in psoriasis (34, 35). Drugs neutralizing type I cytokines, such as TNF-α, are listed in Table IV.

Several of the compounds listed in Tables III and IV have already shown considerable clinical efficacy in well-designed clinical studies. In a phase II multi-centre study on 145 patients, efalizumab (Xanelim®) brought about an improvement of more than 50% in the physician’s global assessment after 8 weeks of treatment in 48% of patients treated with anti-CD11a antibodies compared to 15% of patients treated with placebo (40). Biogen’s alefacept (Amevive®) soon to be registered for psoriasis also showed a marked clinical effect in a placebo-controlled study involving 229 patients (36). The mean reductions in PASI were 38%, 53% and 53%, respectively, in the active groups compared to 21% in the placebo groups after 12 weeks of treatment intravenously. Alefacept caused a similar correlated decrease in CD45RO+ cells. Infliximab (Remicade®) and etanercept (Enbrel®) (both anti-TNF-α) are in phase III clinical studies (31, 32) and etanercept has recently been approved for the treatment of psoriatic arthritis.

An ingenious approach to the treatment of autoimmune diseases is a selective deletion or function-blocking of the autoreactive clone only. Methotrexate seems to work in part via the induction of selective apoptosis within the pool of autoreactive lymphocytes; however, a search for a methotrexate analogue devoid of the side effects has been unsuccessful. Another way is the blocking of T-cell antigen receptor (TCR) taking advantage of the fact that autoreactive T-cells in psoriasis are oligoclonal (44, 45). Several companies are working on small blocking peptides selectively binding to the Vβ portion of TCR, and some progress has been made in

Table II. Non-specific immunosuppressive and cytostatic drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Status for psoriasis</th>
<th>Mode of action/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-86281 (ABT-281) (Abbott)</td>
<td>Phase I</td>
<td>Immunosuppressive ascomycin analogue.</td>
</tr>
<tr>
<td>Pimecolimus (SIDZ ASM 981) (Novartis)</td>
<td>Phase II</td>
<td>Same as above. Pimecolimus has now been registered for the topical use in atopic dermatitis.</td>
</tr>
<tr>
<td>Sirolimus (Rapamycin) (Wyeth Ayerst)</td>
<td>Phase II</td>
<td>Immunosuppressive macrolide antibiotic, blocker of S6 kinase. Clinical effect in psoriasis in combination with cyclosporin (26).</td>
</tr>
<tr>
<td>BCX-1777* (BioCryst Pharmaceuticals)</td>
<td>Preclinical</td>
<td>Purine nucleoside phosphorylase antagonist.</td>
</tr>
<tr>
<td>Paldesine (BioCryst Pharmaceuticals)</td>
<td>Phase II</td>
<td>Purine nucleoside phosphorylase antagonist.</td>
</tr>
</tbody>
</table>

*Chemical structure not disclosed.
Another autoimmune disease, multiple sclerosis (46). No reports are yet available on the use of TCR-binding peptides in psoriasis.

Inhibition of chemotaxis and tissue migration. Reactive lymphocytes and leucocytes infiltrate the skin due to the action of multiple chemokines (10, 47–54) that assist in cell activation and stimulate the expression of several adhesion molecules involved in the interaction between the leucocytes and the endothelia (extravasation) or the target tissue. Because of the importance in other autoimmune and infectious diseases (e.g. HIV infection) there is extensive research within the field of chemokine-blocking drugs (Table V). The development

Table III. Targets for drugs inhibiting T_{H1} and T_{C1} cells

<table>
<thead>
<tr>
<th>Surface protein</th>
<th>Comment</th>
<th>Targeting compound, status for psoriasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR</td>
<td>Antigen receptor, crucial for the initiation of immune response. Binds to MHC-I or MHC-II on APC.</td>
<td>Zorcell (Immune Response): a combination of two T-cell derived peptides in Freund’s adjuvant believed to inactivate autoreactive T-cells. Phase II.</td>
</tr>
<tr>
<td>CD2</td>
<td>Binds to LFA-3 on APC. Activated during proliferation and differentiation of T-cells.</td>
<td>Alfacept (Amevive™ Biogen): LFA-3/IgG1 fusion protein, Prevents T-cell activation by binding to the CD2 receptor on memory effector T lymphocytes. Activity proven in clinical studies and soon to be launched (36).</td>
</tr>
<tr>
<td>CD3</td>
<td>A component of the TCR protein complex on all T-lymphocytes.</td>
<td>Sipilizumab (Biotransplant): Humanized anti-CD2 antibody, In preliminary phase II clinical 70% of patients experienced at least 25% improvement in PASI. Phase II.</td>
</tr>
<tr>
<td>CD4</td>
<td>A component of the TCR protein complex on Th.</td>
<td></td>
</tr>
<tr>
<td>CD28</td>
<td>Binds to CD80 and CD86 on APC. Activated during proliferation and differentiation of T-cells.</td>
<td>IDEC-114 (IDEC): anti-B7-1, primatized antibody genetically engineered from Cynomolgus macaque monkey and human components. Clinical phase II trials ongoing.</td>
</tr>
<tr>
<td>CD40L</td>
<td>Binds to CD40 on APC. Activated during proliferation and differentiation of T-cells.</td>
<td>5D12 (Chiron): Humanized, anti-CD40 antibody under preclinical development for various autoimmune diseases.</td>
</tr>
<tr>
<td>LFA-1</td>
<td>Consists of 2 proteins: CD11a and CD18. Binds to ICAM-1 on APC. Involved in the initiation of the immune response.</td>
<td>Efalizumab (Xanelim™ Genentech): Humanized monoclonal antibody against CD11a subunit of LFA-1. In a recent double-blind, placebo-controlled, phase II, multicenter study (40) on 145 patients with moderate psoriasis 48% of patients achieved >40% improvement when the drug was administered intravenously in 8 weekly doses of 0.3 mg/kg. Progressed to phase III.</td>
</tr>
<tr>
<td>CTLA4</td>
<td>Binds to CD86 on APC. Activated during proliferation and differentiation of T-cells.</td>
<td>BMS-188667 (Bristol-Myers): Chimaeric immunosuppressant antibody against B7. No results from clinical trials on psoriasis reported, but in phase II for several autoimmune diseases.</td>
</tr>
</tbody>
</table>

TCR: T-cell receptor, APC: antigen presenting cells.
of selective drugs (which may be considered both anti-inflammatory and immunosuppressive) is complicated by the fact that leucocyte chemokinesis is governed by a complicated network of many, partly redundant, chemokines and their receptors. Neutrophil chemokinesis is mainly affected by IL-8 and GRO-α, both of which bind to the receptor CXCR2 (48). Pilot studies with the humanized anti-IL-8 antibody have shown a significant clinical effect (10, 55). The lymphocyte-attractant g chemokines are less well investigated and fall into two major categories: the CXC and CC chemokine and receptor families. Many of these chemokines are detectable in significant quantities in psoriasis lesions and are believed to be important (Table V). The chemokine-targeting drugs have been developed but none have been tried in psoriasis.

Migration of lymphocytes to the tissue is accomplished with the help of adhesion molecules, usually classified within three major groups: 1. selectins (E, P, L selectins), 2. adhesion molecules from the immunoglobulin superfamily (ICAM-1, ICAM-2, VCAM-1) and 3. integrins (including the already mentioned LFA-1, αEβ7 integrin). In psoriasis,
the E-selectins, ICAM-1 and VCAM-1 are upregulated on endothelial cells and bind the T-cells via their surface receptors CLA, LFA-1 and VLA-4. Their importance is illustrated by the anti-inflammatory effect of the synthetic inhibitor (BMS 190394). Several other adhesion molecules are available, but all are in early development, and apart from the already mentioned efalizumab (40), results on the antipsoriatic activity are lacking.

DRUGS TARGETING NUCLEAR RECEPTORS FOR HORMONAL LIPIDS AND STEROIDS

This successful group of compounds (including the already used glucocorticoids, retinoids, deltanoids – vitamin D analogues) remains a major area of investigation. The main breakthrough in glucocorticoid research has been the demonstration that anti-inflammatory activity depends on the inhibitory interaction between the specific domain of an activated glucocorticoid receptor and the pro-inflammatory transcription factors, such as AP-1 and NF-κB (56). This opens a venue to the development of potent, purely anti-inflammatory, side-effect-free glucocorticoid analogues (Table VI).

Apart from the recent appearance of tazarotene, bexarotene and a few vitamin D analogues (maxacalcitol, falcacalciotrol), little development has occurred within the retinoids and deltandoids. Tazarotene and maxacalcitol have now been approved for the topical treatment of psoriasis, but their therapeutic efficacy is moderate, requiring combination with other agents (such as the glucocorticoids or phototherapy). A major developmental problem within this group is a poor correlation between in vitro assays, such as receptor binding avidity, and the therapeutic performance.

Exciting new targets are the previously neglected nuclear receptors PPARs (peroxisome proliferator-activated receptors). PPARs are involved in lipid metabolism and have been shown to be crucial for skin barrier development. Later studies show the importance of PPARs in keratinocyte proliferation, angiogenesis and cutaneous inflammation (57). The most abundant species of PPARs in the epidermis are PPAR-δ, followed by PPAR-γ and PPAR-δ. Although expression of PPAR-δ is stable during differentiation, PPAR-γ and PPAR-δ increase in differentiated cells (58). Moreover, PPAR-δ and -γ species may be anti-inflammatory. PPAR-δ knockout mice demonstrate an exacerbated inflammatory cutaneous response to phorbol esters (57). In psoriasis, there is a fivefold increase in the PPAR-δ and PPAR-γ proteins (59). In the clinic, the oral anti-diabetic troglitazone, which was withdrawn in 2000 because of hepatotoxicity, a PPAR-γ activator, was shown to ameliorate psoriasis (60). Ligands for PPAR-δ and -γ are thus promising candidates as antipsoriatic drugs. Development of PPAR ligands is an active area, mainly due to their potential use in diabetes and cancer treatment (61).

Table V. Drugs inhibiting chemotaxis and lymphocyte adhesion

<table>
<thead>
<tr>
<th>Drug</th>
<th>Status for psoriasis</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HuDREG-55 Mab (Protein Design)</td>
<td>Phase I</td>
<td>Humanized antibody directed against L-selectin.</td>
</tr>
<tr>
<td>Bimosiamose (Texas Biotech)</td>
<td>Phase I</td>
<td>E-selectin antagonist.</td>
</tr>
<tr>
<td>VLA-4 inhibitor (Biogen)*</td>
<td>Phase I</td>
<td>A small molecule inhibitor of the very late antigen 4 (VLA-4). VLA-4 on T-cells binds to endothelial vascular cell adhesion molecule-1 (VCAM-1) mediating cell migration.</td>
</tr>
<tr>
<td>CXCR2 antagonist (Celltech)</td>
<td>Preclinical</td>
<td>Small molecule chemokine receptor CXCR2 antagonists.</td>
</tr>
<tr>
<td>CCR1 inhibitor (Millennium)*</td>
<td>Preclinical</td>
<td>Humanized monoclonal neutralizing antibody against IL-8. In a multicentre, placebo-controlled Phase I/II trial in 45 mild-to-moderate psoriasis patients, ABX-IL8 was well tolerated, with a dose-dependent improvement in several measures of disease (55).</td>
</tr>
<tr>
<td>ABX-IL8 (Abgenix)</td>
<td>Phase II</td>
<td></td>
</tr>
</tbody>
</table>

*Structure not disclosed.
OTHER POTENTIAL TARGETS

The above review of emerging drugs in psoriasis indicates an absence of drugs specifically targeting the keratinocyte. Fascination with the anti-inflammatory and immunosuppressive drugs and the belief that keratinocyte hyperproliferation is a mere secondary phenomenon have lessened interest in the drugs affecting keratinocyte proliferation and differentiation. However, the view that the keratinocyte is a passive bystander may be false. Experimental data showing that overexpression of some keratinocyte growth factors (e.g., amphiregulin (62)), or perturbation in differentiation by an aberrant expression of integrins (63), leads to the development of an inflammatory reaction and finally psoriasis-like phenotype in otherwise healthy skin. Unfortunately, at present there are no drugs able to block the relevant growth factors or directly influencing keratinocyte differentiation. There is some development in the EGF blocking agents and mitogen-activated protein kinase inhibitors in oncology (19), but these compounds are far too toxic to be used in a benign inflammatory skin disease.

Another target of potential future interest is the nervous system, especially various neuromediators believed to play a role in inflammation. The role of the nervous system is illustrated by clinical observation showing an association between psychological stress and disease activity. Moreover, stroke and resulting hemiparesis sometimes lead to the clearance or exacerbation of psoriasis at the affected site (64). Surgical denervation often brings about the resolution of psoriasis (65), but β-adrenergic blocking drugs exacerbate it. The link between the nervous system and cutaneous immune reaction has led to the development of the concept of the neuroimmunocutaneous system (66). Numerous neuromediators, among them for example acetylcholine receptor subtypes, are differentially expressed on maturing keratinocytes, suggesting an involvement of this receptor in the regulation of epidermal growth (67). Concentrations of some mediators (VIP, nerve growth factor, β-endorphin) are increased in lesional psoriasis skin, whereas substance P is decreased. Many neuromediators (such as α₂-MSH) have a profound effect on skin inflammation (68, 69). Neuromediators may thus be a target for antipsoriatic therapy.

Lastly, the potential role of angiogenesis inhibitors should be mentioned. Angiogenesis is a prominent microscopic feature of lesional skin in psoriasis and seems to be caused by an elevated expression of vascular endothelial growth factor (VEGF) and its PLC-γ-coupled receptors (70). Receptor activation causes calcium-mediated signalling resulting in the activation of calcineurin and NFAT (nuclear factor of activated T-cells). This pathway is potently blocked by cyclosporin A and according to some views enhances

<table>
<thead>
<tr>
<th>Drug</th>
<th>Status for psoriasis</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGN-194310 (Allegan)</td>
<td>Phase II</td>
<td>Ligand of RARα/β/γ. Claimed to be active in psoriasis, no clinical data available.</td>
</tr>
<tr>
<td>Bexarotene (Ligand)</td>
<td>Launched</td>
<td>Selective retinoid X receptor ligand (RXR) agonist available as oral formulation (Targetin) and a gel formulation. In clinical trials for a variety of cancers; activity in psoriasis unknown.</td>
</tr>
<tr>
<td>BAL-2299 (Basilea)</td>
<td>Phase II</td>
<td>Oral vitamin D analogue, low potency VDR agonist.</td>
</tr>
<tr>
<td>KI-1650 (Leo)*</td>
<td>Preclinical</td>
<td>Vitamin D analogue for topical application heralded as potential follow-up to calcipotriol.</td>
</tr>
<tr>
<td>Falcaltitriol (Wisconsin Alumni Research Foundation)</td>
<td>Phase II</td>
<td>Topical vitamin D analogue.</td>
</tr>
<tr>
<td>Maxacalcitrol (Chugai)</td>
<td>Launched</td>
<td>Topical vitamin D analogue.</td>
</tr>
</tbody>
</table>

*Structure not disclosed.

Table VI. Ligands of the nuclear steroid receptors with possible anti-psoriatic activity

Moreover, stroke and resulting hemiparesis sometimes lead to the clearance or exacerbation of psoriasis at the affected site (64). Surgical denervation often brings about the resolution of psoriasis (65), but β-adrenergic blocking drugs exacerbate it. The link between the nervous system and cutaneous immune reaction has led to the development of the concept of the neuroimmunocutaneous system (66). Numerous neuromediators, among them for example acetylcholine receptor subtypes, are differentially expressed on maturing keratinocytes, suggesting an involvement of this receptor in the regulation of epidermal growth (67). Concentrations of some mediators (VIP, nerve growth factor, β-endorphin) are increased in lesional psoriasis skin, whereas substance P is decreased. Many neuromediators (such as α₂-MSH) have a profound effect on skin inflammation (68, 69). Neuromediators may thus be a target for antipsoriatic therapy.

Lastly, the potential role of angiogenesis inhibitors should be mentioned. Angiogenesis is a prominent microscopic feature of lesional skin in psoriasis and seems to be caused by an elevated expression of vascular endothelial growth factor (VEGF) and its PLC-γ-coupled receptors (70). Receptor activation causes calcium-mediated signalling resulting in the activation of calcineurin and NFAT (nuclear factor of activated T-cells). This pathway is potently blocked by cyclosporin A and according to some views enhances
the antipsoriatic activity of this immunosuppressant (71). Small molecules and antibodies capable of blocking the VEGF receptor (72) are currently in clinical trials for the treatment of solid tumours (73) and acute myeloid leukaemia (74) and it remains to be established whether they demonstrate any antipsoriatic activity.

CONCLUDING COMMENTS

Psoriasis is a chronic skin disease affecting on average 2% of the population in developed countries. It has a considerable impact on quality of life, psychological and physical disability (75–77). Although the world market for psoriasis treatment seems to be large in absolute terms (over $3 billion), it is relatively small compared to chronic diseases such as rheumatoid arthritis or autoimmune inflammatory bowel disease. For that reason alone the antipsoriatic compounds are still likely to emerge in large part from drug development programmes designed for “bigger” diseases. By the same argument, the main development is likely to continue within immunosuppressive and anti-inflammatory agents. The development has been greatly facilitated by the advancement of basic immunological knowledge and the biotechnology approach. Large-scale production of entirely human antibodies and recombinant proteins is feasible. The efficacy of several biotechnology drugs, such as those targeting TNF-α (infliximab, etanercept) or T-cell surface markers (alefacept, efalizumab), is already proven. These drugs are soon to be registered for clinical use in psoriasis. Still, however, the therapeutic results of a particular antibody or lymphokin are difficult to predict on a theoretic basis; drug discovery by serendipity rather than by rational systematic approach is likely to continue for a while yet. Since considerable functional redundancy in the cytokine and chemokine signalling networks poses another problem, the development of less selective, small-molecule immunomodulating agents should not be abandoned.

Despite recent advancements, the ideal anti-psoriatic medication has not yet been found. What is needed is a safe, orally administrated compound providing a >80% reduction in disease activity in a significant (>70%) number of patients. The combination of two or more anti-psoriatic compounds is likely to enhance therapeutic activity and in many instances reduce toxic effects. Rotation therapy will be more achievable (78). The further development of anti-psoriatic drugs is therefore a welcome trend. Any drug showing efficacy over placebo should be included in the therapeutic armament, even if its efficacy is lower than that of existing therapies (79).

REFERENCES

