Interleukin-18 is a proinflammatory cytokine that stimulates natural killer cells (NK) and T cells and enhances innate immunity as well as specific Th1 immune responses. Human keratinocytes produce IL-18, like monocytes and macrophages do, being two major sources of this molecule (1, 2). IL-18 acts directly on NK cells to stimulate INF-γ synthesis and upregulate their killing capacity (1, 3). It is believed that IL-18 derived from keratinocytes might be involved in the cutaneous Th1-type immune response (1). Recent publications have shown that IL-18 expression in psoriatic lesional skin is higher than in normal skin (1, 4). McKenzie et al. (4) assessed the expression of IL-18 and IL-18 receptor (R) mRNA in biopsies of lesional and non-lesional psoriatic skin. A significant 2.7-fold increase in the expression of IL-18 mRNA in lesional psoriatic skin compared to both normal (p = 0.04) and non-lesional skin (p = 0.004) was observed. Moreover, IL-18R mRNA was 5.2-fold greater in lesional skin compared to normal (p = 0.01) and non-lesional psoriatic skin (p = 0.001). No difference in IL-18 and IL-18R mRNA was noted between normal skin and non-lesional one. Western blotting combined with ELISA for IL-18 demonstrated that the immunoreactive IL-18 in extracts of psoriatic scales contained the mature form of IL-18, but most of the IL-18 was pro-IL-18 (1).

As a whole, these findings indicate that keratinocyte-derived IL-18 participates in the development of Th1 responses in psoriatic lesions, and that its bioactivity appears to be tightly regulated in cutaneous inflammation. We investigated the correlations between IL-18 in peripheral blood and the subpopulations of blood lymphocytes in patients who underwent local therapy for psoriasis vulgaris.

MATERIAL AND METHODS
We examined 12 patients (6 women and 6 men) ranging in age from 18 to 57 years (mean 29.9 ± 11.2) and compared them with 10 healthy subjects (5 women and 5 men) matched for age. The patients were hospitalized in the Department of Dermatology, Lublin Medical University. They had active psoriasis vulgaris needing admission, but did not receive any medication including systemic treatment. Appearance of present lesions on the skin was from 15 to 180 days (mean 62.5 ± 51.4). Duration of the disease varied from 1 to 46 years (mean 13.0 ± 11.7 years) and size of the plaques from 2 to 6 cm. The extent of psoriasis was evaluated by the same investigator using the Psoriasis Area and Severity Index (PASI) score, which ranged from 15 to 48. We evaluated the percentage of affected skin based on formulas used in surgery to assess the affected body surface in burns (5). Peripheral blood was collected before the administration of any form of treatment.

Plasma samples were collected using EDTA, centrifuged for 10 min at 1000 g and stored at −80 °C. The presence of IL-18 was determined with the human IL-18 ELISA kit (MBL, Japan; sensitivity 12.5 pg/ml). The average coefficient of variance was 5–10% for both inter- and intra-assay reproducibility. The assay uses two monoclonal antibodies against two different epitopes on human IL-18.

The following cells were studied using flow cytometry: CD3+ (T lymphocytes), CD19+ (B lymphocytes), CD4+ (double-positive lymphocytes), CD4+ (T helper lymphocytes), CD8+ (T cytotoxic lymphocytes), CD3−/CD16+ CD56+ (natural killer cells), CD3+ 25+ (T regulatory lymphocytes with the alpha chain of IL-2R), CD25+ (alpha chain of IL-2R on all lymphocytes), CD45 RO+ (memory cells on all lymphocytes), CD45 RO+ /CD4+ (memory T helper lymphocytes). The cell surface antigens were determined on fresh cells at the time of sampling. Mononuclear cells were isolated by density centrifugation on Lymphoprep (Nycomed, Norway) and washed twice in phosphate-buffered saline (PBS) containing 1% bovine serum albumin. Double-colour immunofluorescence studies were performed using combinations of phycoerythrin (PE) and fluorescein isothiocyanate (FITC) conjugated monoclonal antibodies. The antibody
Table I. Details of monoclonal antibodies used for definition of lymphocyte subsets

<table>
<thead>
<tr>
<th>Antibody Fluorochrome Clone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+ PE IgG2a</td>
</tr>
<tr>
<td>CD19+ PE Id.01,clone 407</td>
</tr>
<tr>
<td>CD45+/CD4+ FITC/PE IMMU 19</td>
</tr>
<tr>
<td>CD45+ RA/CD4+ FITC/PE 2/RM 052</td>
</tr>
<tr>
<td>CD45+/CD14+ FITC PE IgG1/IgG2a, Clone IMMU 19.2/RM052</td>
</tr>
<tr>
<td>CD45+ RA FITC IgG1</td>
</tr>
<tr>
<td>CD4+/CD8+ FITC Isotype IgG2a/IgG2a</td>
</tr>
<tr>
<td>CD4+ RO FITC Isotype IgG2a</td>
</tr>
<tr>
<td>CD8+ PE IgG2a</td>
</tr>
<tr>
<td>CD25+ FITC IgG2a</td>
</tr>
<tr>
<td>CD3+/CD19+ FITC/PE IgG2/IgG1</td>
</tr>
<tr>
<td>CD56+ PE IgG1</td>
</tr>
<tr>
<td>CD3−/CD16+/CD56+ FITC/PE SK7/B73 1+</td>
</tr>
<tr>
<td>IgG1FITC/IgG2PE FITC/PE Negative control</td>
</tr>
<tr>
<td>Goat Anti-Mouse FITC</td>
</tr>
</tbody>
</table>

All the antibodies were from the Ortho Diagnostics System except CD19+ and CD3−/CD16+/CD56+, which were from Becton-Dickinson. FITC = fluorescein isothiocyanate; PE = phycoerythrin.

RESULTS

IL-18 levels were significantly increased in the patients with psoriasis compared with healthy controls (312.3 ± 137.0 vs. 175.7 ± 78.90 pg/ml; p < 0.03) (Fig. 1). We observed a significant correlation between the level of IL-18 and the area of psoriatic lesions (p < 0.04, R = 0.6070) and the PASI score (p < 0.03, R = 0.6130) (Fig. 2). There was a significant correlation between IL-18 and NK cells expression (CD3−/CD 16+ CD56+ cells (p < 0.02, R = 0.8182), and between IL-18 and the percentage of memory helper CD45RO+/CD4+ cells (p < 0.04, R = 0.5884). Other correlations were not statistically significant.

DISCUSSION

IL-18 has been found to have a variety of biological actions. As a pleiotropic cytokine, it can play an immunoregulatory role in the human defence system, especially in inflammatory, infectious and autoimmune diseases (6). IL-18 promotes angiogenesis and tumour suppression (6), and has been found increased in almost every inflammatory disease – from psoriasis and atopic eczema to pancreatitis and infections (5, 6 – 12, 15 – 17).

Naik et al. (19) observed that among non-bone marrow derived skin cells, IL-18 mRNA is constitutively expressed by human keratinocytes, but not by dermal microvascular endothelial cells, dermal fibroblasts or melanocytes. IL-18 mRNA and intracellular protein levels are not influenced by pro-inflammatory stimuli neither for human keratinocytes nor by dermal cells. In immunohistochemistry, IL-18 protein is detected in the basal keratinocytes of normal human skin, but its expression is markedly upregulated in suprabasal keratinocytes in psoriasis (4, 18).

Both Ohta et al. (1) and McKenzie et al. (4) state that in psoriasis there is an increased concentration of IL-18 and its receptor in lesional and non-lesional skin, indicating its involvement in the psoriatic process. The IL-18 elevated plasma levels found in our study may indicate a systemic activation of this cytokine production. This may also be connected with an increased neutrophil activation and an over-production of adhesion molecules, VCAM, ICAM-1, and E-selectin in psoriasis (19).

Neutrophils are an important participant in psoriasis. Jablonska et al. (21) investigated the effect of IL-18 on the production of IL-1β, IL-1Ra and sIL-1R2 in human neutrophils and found that rhIL-18 induces IL-1β and, to a lesser extent, IL-1Ra and sIL-1R2 production by human LPS-stimulated neutrophils. The capacity of IL-18 to serve as an effective modulator for IL-1β and its regulatory proteins may be significant in the inflammatory and immune reactions mediated by IL-1β.

Our finding of increased plasma levels of IL-18 which correlate with the extent of skin lesions and the PASI score suggest that IL-18 influence immune cells not...
only in the skin, but also in peripheral blood. IL-18 may affect the expression of selected receptors on NK cells, e.g. CD16, and augment the percentage of memory helper CD45RO+/CD4+ cells supporting a systemic influence on the immune system. However, as IL-18 is augmented in many inflammatory diseases, it is not a specific event for psoriasis (19, 22, 23).

REFERENCES

8. Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 2001; 125: 177 – 183.


