INVESTIGATIVE REPORT

Gene Mutation Analysis in Five Cases of Dermatofibrosarcoma Protuberans Using Formalin-fixed, Paraffin-embedded Tissues

Hidehisa SAEKI¹, Yuichiro TSUNEMI¹, Mamitaro OHTSUKI², Kanako KIKUCHI¹ and Kunihiko TAMAKI¹

¹Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo and ²Department of Dermatology, Jichi Medical School, Tochigi, Japan

Fusion of the collagen type 1 α 1 (COL1A1) gene with the platelet-derived growth factor B-chain (PDGFB) gene has been pointed out in dermatofibrosarcoma protuberans. Various exons of the COL1A1 gene have been shown to be involved in the fusion with exon 2 of the PDGFB gene. We studied the breakpoints of the COL1A1 gene using formalin-fixed, paraffin-embedded tumour specimens from five patients with dermatofibrosarcoma protuberans (three reconfirmations and two new cases). Reverse transcriptase-PCR was performed using paraffin-embedded tissues. Nucleotide sequence analysis was carried out using the PCR products to identify the breakpoints. The COL1A1-PDGFB fusion transcripts were detected from the tumour specimens. Sequence analysis revealed that the ends of exons 18, 29, 38, 42 and 44 in the COL1A1 gene were fused with the start of exon 2 in the PDGFB gene. This study identified a novel COL1A1 breakpoint, namely, exon 44 of the COL1A1 gene. Detection of the aberrant fusion transcript using formalin-fixed, paraffin-embedded tumour specimens is useful as a diagnostic aid for dermatofibrosarcoma protuberans in cases where fresh or frozen samples of tumour tissue are not available. Key words: dermatofibrosarcoma protuberans; paraffin-embedded tissue; COL1A1; PDGFB.

(Accepted September 20, 2004.)

Hidehisa Saeki, MD, Department of Dermatology, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail: saeki-der@h.u-tokyo.ac.jp

Dermatofibrosarcoma protuberans (DFSP) is an uncommon neoplasm of the dermis extending to the subcutis (1). This tumour is considered to be a locally invasive neoplasm of intermediate malignancy because it grows aggressively, recurs at a high rate, but metastasizes rarely. Recent cytogenetic studies have revealed that a reciprocal translocation, t(17;22)(q22;q13), and a supernumerary ring chromosome derived from the translocation, r(17;22), are highly characteristic of DFSP (2, 3). These chromosomal re-arrangements fuse the collagen type I α 1 (COL1A1) and the platelet-derived growth factor B-chain (PDGFB) genes (4). We analysed gene mutations in five cases of DFSP (three reconfirmations and two new cases) using formalin-fixed, paraffin-embedded tissues and identified a novel breakpoint of the COL1A1 gene.

MATERIALS AND METHODS

RNA extraction

The extraction of RNA from paraffin-embedded tumour tissues was performed according to Wang et al. (5) with minor modification. In brief, six sections, each 6 μm thick, were cut from a block of a formalin-fixed, paraffin-embedded tumour sample and collected in a sterile microtube. After the pellets underwent deparaffinization with two exchanges of xylene and three washes with 100% ethanol, the pellets were minced in 200 μl lysis buffer (20 mmol/l Tris-HCl, pH 8.0; 20 mmol/l EDTA and 2% SDS) using a hand homogenizer and then 50 μl proteinase K (20 mg/ml) were added to the samples. After incubation at 55°C for 48 h, 1.0 ml Trizol reagent (Gibco BRL, Gaithersburg, MD, USA) was added to the sample, followed by 200 μl chloroform. After vortex mixing and centrifugation, the aqueous phase was transferred into a 1.5-ml sterile microtube and precipitated with 0.75 ml 2-propanol. The RNA pellet was resuspended in 20 μl of sterile water.

Reverse transcription-polymerase chain reaction (RT-PCR) and sequencing

To detect the presence of COL1A1-PDGFB fusion transcripts, RT-PCR was carried out using 16 COL1A1 forward primers and a specific PDGFB reverse primer according to Wang et al. (5). Sixteen COL1A1 forward primers were designed in the following COL1A1 exons: exon 5, 8, 11, 15, 17, 20, 23, 26, 27, 32, 35, 38, 40, 44, 46, 49, and these primers were considered sufficient to span the various breakpoints within the region encoding the alpha-helical domain of the COL1A1 polypeptide (exon 6 to exon 49) (5). The PCR products were directly sequenced by an Applied Biosystems 373A automated DNA sequencer to identify the breakpoints.

RESULTS

Clinical and histological features of the patients

Table I shows a summary of the clinical and histological features of five patients. Cases 1, 2 and 3 were reported elsewhere in detail (6, 7). Patient 4 (a 17-year-old Japanese woman) was seen in June 1986 for a small nodule on the anterior aspect of the left lower leg (Fig. 1a). The nodule had been present for 2 years and had slowly enlarged. A skin biopsy specimen showed a
tumoral proliferation of spindle-shaped cells with a storiform arrangement (result not shown but summarized in Table I). Some of the cells penetrated into the subcutaneous fat. Cytological atypia of tumour cells was mild and mitotic activity was low. We diagnosed this case as DFSP and the lesion was excised with 2-cm margins above the fascia and sutured.

Patient 5 (a 52-year-old Japanese man) was seen in December 1987 for a tumour on the upper chest. The lesion was a cluster of multiple elastic hard reddish-brown nodules (Fig. 1b). The nodules had been present for 5 years and had slowly enlarged and elevated. A skin biopsy specimen disclosed a dense, tumoral proliferation of spindle-shaped cells with a storiform arrangement (Table I). Cytological atypia of tumour cells was mild. We diagnosed this case as DFSP and the lesion was excised with 5-cm margins above the fascia (including part of the muscle) and the skin was grafted.

Table I. The clinical features, histopathology findings, fusion genes and reverse transcription-PCR results in five patients with dermatofibrosarcoma protuberans

<table>
<thead>
<tr>
<th>Case 1 (Ref. 6)</th>
<th>Case 2 (Ref. 7)</th>
<th>Case 3 (Ref. 7)</th>
<th>Case 4 (Fig. 1a)</th>
<th>Case 5 (Fig. 1b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/sex</td>
<td>41/M</td>
<td>39/F</td>
<td>18/M</td>
<td>17/F</td>
</tr>
<tr>
<td>Site</td>
<td>Lower back</td>
<td>Buttock</td>
<td>Thigh</td>
<td>Lower leg</td>
</tr>
<tr>
<td>Preoperative duration</td>
<td>25 years</td>
<td>15 years</td>
<td>8 years</td>
<td>2 years</td>
</tr>
<tr>
<td>Clinical feature</td>
<td>Multinodular plaque</td>
<td>Multinodular plaque</td>
<td>Dome-shaped nodule</td>
<td>Small nodule</td>
</tr>
<tr>
<td>Tumour size</td>
<td>58 × 38 mm</td>
<td>35 × 15 mm</td>
<td>47 × 35 mm</td>
<td>8 × 8 mm</td>
</tr>
<tr>
<td>Histopathology</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Storiform pattern</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Herringbone pattern</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Cytological atypia</td>
<td>Mild</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
</tr>
<tr>
<td>Fusion gene</td>
<td>COL1A1 (exon 18)</td>
<td>COL1A1 (exon 42)</td>
<td>COL1A1 (exon 29)</td>
<td>COL1A1 (exon 38)</td>
</tr>
<tr>
<td>RT-PCR result</td>
<td>COL1A1 primer Exon 17</td>
<td>COL1A1 primer Exon 40</td>
<td>COL1A1 primer Exon 27</td>
<td>COL1A1 primer Exon 38</td>
</tr>
<tr>
<td>PDGFB primer</td>
<td>Exon 2</td>
<td>Exon 2</td>
<td>Exon 2</td>
<td>Exon 2</td>
</tr>
<tr>
<td>Amplified product</td>
<td>173 bp</td>
<td>319 bp</td>
<td>220 bp</td>
<td>106 bp</td>
</tr>
</tbody>
</table>

RT-PCR and sequencing

Table I also shows the RT-PCR results. PCR revealed that 173-, 319-, 220-, 106- and 91-bp DNA products were obtained by the amplification with COL1A1 primers exon 17, 40, 27, 38 and 44, and PDGFB primer exon 2 in cases 1–5, respectively (data not shown). Nucleotide sequence analysis disclosed that the ends of exon 18, 42, 29, 38 and 44 in the COL1A1 gene were fused with the start of exon 2 in the PDGFB gene in cases 1–5, respectively (Fig. 2, for cases 4 and 5).

DISCUSSION

Recent studies have revealed that fusion of COL1A1 gene with PDGFB gene is highly characteristic of DFSP. COL1A1 gene encodes the major component of type I collagen, which is produced primarily by fibroblasts. PDGFB is a potent mitogen for a number of cell types.
The location of breakpoints within COL1A1 varies greatly, but is always limited to the region encoding the alpha-helical domain (9). The exons of COL1A1 in this region end at the last base of a codon (4, 9). The PDGFB segment of the chimeric transcript always starts with exon 2. The resulting COL1A1-PDGFB fusion is in-frame, because exon 2 of PDGFB starts at the first base of codon 22. The COL1A1 part of the fusion gene serves to provide an active promoter and signal peptide for PDGFB (10). Production of the abnormal fusion transcripts in the fibroblast, the suspected cell of origin of DFSP, probably causes autocrine stimulation and cell proliferation which is responsible for the development of DFSP (9, 11). Various exons in the alpha-helical domain of the COL1A1 gene have been shown to be involved in the fusion with exon 2 of the PDGFB gene (4–7, 9, 11, 12). However, to the best of our knowledge, there has been no report of DFSP with COL1A1 (exon 44)-PDGFB (exon 2) fusion transcript. This study identified a novel COL1A1 breakpoint, namely, exon 44 of the COL1A1 gene.

DFSP is an uncommon cutaneous neoplasm of intermediate malignancy. Its clinical and histological diagnosis is not difficult in typical cases, but sometimes it must be distinguished from other cutaneous tumours such as dermatofibroma, neurofibroma, neurilemmoma and malignant fibrous histiocytoma. Because the COL1A1-PDGFB fusion transcripts have been observed in only DFSP and DFSP-related tumours such as superficially located adult fibrosarcoma (13), detection of the aberrant fusion transcript seems to be useful at differential diagnosis. Most of the previous molecular approaches to DFSP were based on frozen tissue specimens or cultured tumour cells. Because fresh or frozen samples of tumour tissue are not always available, techniques in extraction of RNA from formalin-fixed, paraffin-embedded tissues have recently been improved (14–17). Wang et al. conducted an RT-PCR assay for the COL1A1-PDGFB fusion transcripts in DFSP to assess its feasibility in detecting these transcripts using archival formalin-fixed, paraffin-embedded tumour specimens (5). They detected them in 10 of 12 paraffin-embedded DFSP tumour tissues, showing that this molecular assay is useful as a diagnostic aid for DFSP. Previously, we reported three cases of DFSP and detected the fusion transcripts by RT-PCR using cultured tumour cells (6, 7). In this study, we first tried to detect the COL1A1-PDGFB fusion transcripts from the paraffin-embedded tumour tissues in cases in which we had already detected the transcripts from the cultured tumour cells (cases 1, 2 and 3). We did detect the same fusion transcripts in these cases in the cultured tumour cells and paraffin-embedded tumour tissues. The consistent results in different samples from the same tumours suggest that the RT-PCR assay is reliable. In addition, we attempted to detect the fusion transcripts using the archival paraffin-embedded tumour specimens from two patients with DFSP who visited our clinic in 1986 and 1987, and were also able to detect them by RT-PCR in these cases. It is sometimes difficult to diagnose DFSP only by clinical features and histopathology when fresh or frozen samples of tumour tissue are not available. Therefore, this assay using paraffin-embedded tumour tissues is very useful as a diagnostic aid for DFSP.

ACKNOWLEDGEMENTS

This work was supported by Health Science Research Grants from the Ministry of Health, Welfare and Labor of Japan, and grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

