Multiple Skin Metastases of Amelanotic Melanoma Originating from the Sinonasal Mucosa

Teruki Yanagi1, Masashi Akiyama1, Maki Kasai1, Masayuki Yamakura2, Mitsufumi Nishio2 and Hiroshi Shimizu1
Departments of 1Dermatology and 2Internal Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638, Japan. E-mail: yanagi@med.hokudai.ac.jp
Accepted February 21, 2005.

Sir,
Primary sinonasal mucosal melanomas are uncommon, aggressive tumours. Similar to other malignancies, nasal melanomas frequently metastasize to the lymph nodes, lungs, liver and bone. However, skin metastases are very rare (1). We report here a patient with amelanotic melanoma originating from the sinonasal mucosa who rapidly developed multiple skin metastases and the diagnosis was confirmed by a skin biopsy.

CASE REPORT
A 41-year-old Japanese man was referred to our hospital with a sinonasal tumour, systemic lymphadenopathy and multiple subcutaneous nodules. He noticed that his right nostril had become obstructed 10 months before and had suffered repeated episodes of epistaxis a month before. Multiple subcutaneous nodules had appeared 2 months before and they had gradually enlarged and increased in number. Physical examination revealed approximately 30 asymptomatic subcutaneous nodules on his trunk (Fig. 1a). Diffuse lymphadenopathy was also noted. Magnetic resonance imaging demonstrated a large mass occupying the right maxillary sinus and the nasal cavity (Fig. 1b). Computed tomography showed multiple lymphadenopathy throughout his whole body and metastatic tumours in the peritoneum and retroperitoneal regions.

In laboratory examinations, biochemical tests revealed high lactate dehydrogenase concentrations (512 IU/l, normal 119–229) and high 5-S-cysteinyl-dopa concentrations in the serum (144.3 nmol/l, normal 1.5–8.0).

Skin biopsy specimens from the upper back showed nests of anaplastic tumour cells in the subcutaneous tissue. Immunohistochemically, the tumour was positive for S-100 and HMB45, although no melanin pigment was observed. The tumour cells only weakly stained for CD56, but were negative for cytokeratins and leukocyte common antigen (Fig. 2). No cutaneous lesion suggestive of primary malignant melanoma was found over the patient’s entire body surface and no remarkable history of skin lesions was obtained. From these findings, the diagnosis of amelanotic melanoma of sinonasal mucosal origin with multiple subcutaneous and lymph node metastases was finally made. Right inguinal lymph node biopsy specimens also revealed similar features to those of the subcutaneous nodule, which supported the diagnosis. The tumour was resistant to systemic chemotherapy, and the patient died after 10 weeks’ hospitalization due to renal dysfunction caused by tumour invasion.

DISCUSSION
Mucosal melanomas are rare, representing 1.3% of all melanomas, of which 55% were located within the head.
and neck regions (2); 33–67% of these mucosal melanomas found in the head and neck region are amelanotic. This rate is higher than the rate of cutaneous amelanotic melanomas (1, 3, 4). Sinonasal melanomas rarely develop skin metastases, and only one case was found in the literature in which multiple skin metastases occurred 1 year after initial resection of the primary lesion (1, 5). The present case is unique in that cutaneous metastatic nodules appeared within several months after the patient had noticed nasal congestion, and these skin nodules increased rapidly in number. The definite diagnosis of amelanotic melanoma was made from the histopathological observation of the skin metastatic lesions. The present case suggests that we should bear in mind that sinonasal amelanotic melanoma is one of the differential diagnoses for an aggressive tumour with multiple skin metastatic lesions.

REFERENCES