INVESTIGATIVE REPORTS

Morphological Assessment of the Effects of Cyclosporin A on
Mast Cell - Nerve Relationship in Atopic Dermatitis

MASAHIKO TOYODA and MASAaki MOROHASHI
Department of Dermatology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan

There is considerable clinical and experimental evidence that
cyclosporin A has powerful therapeutic effects on severe, ther-
apy-resistant atopic dermatitis. To further clarify the
mechanism of beneficial action of cyclosporin A for atopic
dermatitis, we assessed its effects on mast cell morphology
and on the topographical relationship between mast cells and
cutaneous nerves in lesional skin of atopic dermatitis. The
ultrastructural features of mast cell - specific granules in
cyclosporin A-treated skin compared with those in the pre-
treated skin included an increase in the stable granule popu-
lation and the disappearance of signs of granule exocytosis.
The close apposition of mast cells to peripheral nerve fibres in
the upper dermis and an invasion of mast cells into nerve bundles
in the lower dermis were immunohistochemically noted, and
an intimate association between mast cells and unmyelinated
dermal nerves or Schwann cells was observed ultrastructurally
in the pretreated lesional skin. After cyclosporin A therapy,
the close interrelation of mast cells and cutaneous nerves
was not seen. These findings suggest that cyclosporin A may
exert its therapeutic efficacy by inhibiting mast cell activa-
tion, and by affecting the interaction between mast cells and
nerves, which may explain the beneficial therapeutic action of
cyclosporin A in the management of the disease. Key words:
electron microscopy; immunohistochemistry; skin; therapy.

(Accepted February 27, 1998.)

M. Toyoda, Department of Dermatology, Toyama Medical
and Pharmaceutical University, 2630 Sugitani, Toyama 930-
0194, Japan.

The pathogenesis of atopic dermatitis (AD) is multifactorial
and involves genetic, physiological, pharmacological, psycho-
logical, and immunologic factors. Mast cells (MCs) are known
to participate not only in immediate-type hypersensitivity but
also in chronic inflammation and delayed immune response,
and to contribute to the pathomechanism of various allergic
skin disorders, such as AD (1, 2). The nervous system is also
closely associated with exacerbation as well as onset of AD
through emotional stress (3), altered patterns of cutaneous
innervation, and abnormal expression of neuropeptides in
lesional skin (4 – 7). All of these factors could contribute to
interaction between the nervous system and the immune sys-
tem, referred to as neurogenic inflammation in AD. Histamine
released from MCs is thought to amplify neurogenic inflam-
ma tion in the skin, and, in turn, some types of neuropeptides
released from sensory nerve endings upon stimulation are cap-
able of inducing the release of chemical mediators from skin
MCs, which leads to a cell-mediated inflammatory skin condi-
tion (1, 8). In addition, an intimate spatial relationship of MCs
to peripheral nerve fibres has been reported in lesional skin of

AD patients (9), and therefore close interaction between MCs
and the cutaneous nervous system may play a significant role in
the pathophysiology of AD.

Cyclosporin A (CsA) has been shown to be a potent and
effective therapeutic agent in many inflammatory and
immunologically mediated dermatologic disorders, including
AD. Many clinical trials have confirmed the remarkable efi-
cy of oral CsA therapy in patients with severe, drug-resis-
tant AD, which results in a marked reduction in disease
severity as well as in itch intensity (10 – 12). Although the
exact mechanism of the beneficial effects of CsA therapy in
AD has not been sufficiently elucidated because of its mani-
fold modes of action, most of the evidence suggests that
CsA suppresses T-lymphocyte function and the production of
cytokines involved in the immunopathogenesis of AD (13,
14). Although there have been several studies about the effects
of CsA on MCs (1, 15 – 18), a morphological assessment of
human skin MCs and the MC - nerve relationship in lesional
skin of AD patients treated with CsA has never been reported
in the literature.

The aim of this study was to ascertain whether CsA therapy
elicits alterations in the morphology of MCs and/or in the
topographical relationship between MCs and cutaneous nerves
in patients with severe, chronic AD.

MATERIALS AND METHODS

Patients

Informed consent was obtained from two male patients, aged 25 and
28, with severe, constitutional eczematous lesions and with a chronic
course of more than 10 years who fulfilled the diagnostic clinical cri-
teria for AD (19, 20). They were treated with CsA (Sandimmune, Novartis Pharma K.K.), at a dose of 5 mg/kg/day, given orally for 1
month as a single evening dose (21). Both patients had been resistant to
various other systemic and topical treatments in the past. Systemic
treatments for AD, such as PUVA therapy and oral administration of
antihistamines, had been discontinued 4 weeks before the start of treat-
ment with CsA, and neither patients had received any topical therapy
for 2 weeks before treatment. No other concurrent therapy was given
during the course of CsA therapy in either patient.

Biopsies and tissue processing

Four-millimeter punch biopsy specimens were obtained from licheni-
fied lesions on the back of each patient before treatment with CsA.
Subsequently, biopsy specimens were taken 1 month after the start of
CsA therapy from lesional skin near sites from which the pretreatment
specimens had been obtained.

Half of each biopsy specimen was fixed in 10% buffered neutral for-
malin and embedded in paraffin. For histological examination, 4 μm
tissue sections were stained with hematoxylin and eosin and with 1%
toluidine blue, pH 7.0, to identify MCs. For immunohistochemical stu-
dies, the formalin-fixed and paraffin-embedded tissue sections were
deparaffinized, rehydrated, rinsed in phosphate-buffered saline, and
then stained using the avidin-biotin-peroxidase complex method (22) with an antibody recognizing the general neuronal marker, protein gene product 9.5 (Ultralene Ltd., Isle of Wight, UK), which stains various populations of cutaneous nerves (23). Controls examined consisted of sections in which the primary antibody was omitted and/or was substituted by an irrelevant monoclonal antibody of a similar isotype. After the immunohistochemical procedures, the sections were counterstained with toluidine blue, which made it possible to recognize the topographical relationship between MCs and nerves using conventional microscopy.

The remaining halves of the biopsy specimens for electron microscopy were fixed in 2.5% glutaraldehyde and postfixed in 2% osmium tetroxide, and then stained en bloc in 3% aqueous uranyl acetate. They were dehydrated in graded steps of ethanol and embedded in Epon 812. Ultrathin sections (70 nm) were doubly stained in uranyl acetate and lead citrate prior to examination in an H-300 transmission electron microscope (Hitachi, Tokyo) at an acceleration voltage of 100 kV.

Quantification of MCs

The number of MCs in the papillary dermis and the subpapillary region was counted in 10 non-serial sections for each skin sample in 10 different visual fields at a magnification of ×400 with a light microscope, and mean number of MCs was recorded for each skin sample. The results of MC number before and after treatment with CsA were analyzed statistically using a paired t-test.

RESULTS

A substantial clinical improvement, characterized by a rapid relief of itch intensity and a remarkable reduction in disease severity, was achieved after oral administration of CsA in both patients. The histological changes observed in skin sections before and after CsA treatment paralleled the clinical improvement. After the CsA therapy, a clear reduction in the dermal mononuclear cell infiltrate was observed, as was a remarkable decrease in epidermal thickness and in the number of intraepidermal microvesicles.

The number of MCs

In lesional skin before treatment, the number of MCs was 73.4 ± 6.2 (mean ± SD) and 80.5 ± 8.1 in the 2 patients in 10 visual fields at a magnification of ×400. After 1 month of CsA treatment, a slight but statistically insignificant reduction was observed in MC number of the 2 patients (68.5 ± 5.5 and 75.0 ± 4.9, respectively). Morphological changes of MCs, such as in their cell size or in their distribution, were not observed at the light microscopic level before or after CsA therapy.

Ultrastructure of MCs

A comparison of specimens taken before and after treatment with CsA showed some interesting ultrastructural alterations in MCs, especially in their specific granules. In lesional skin prior to treatment, MCs possessed specific granules which exhibited various degrees of degranulation. Most of the specific granules were homogeneous, showing decreased electron density of the granule matrix, whereas adjacent homogeneous granules were often fused with each other, forming masses of flocculent material. MC granules were frequently in contact with extracellular spaces, a sign of granule exocytosis (Fig. 1a). MC granules were also observed in extracellular spaces near MCs in some sections. By comparison, MCs in the skin of AD patients after 1 month of CsA therapy possessed not only homogeneous granules but also a population of stable granules which were uniformly electron-dense and surrounded by the distinct outline of a perigranular membrane. Exocytosis of MC granules, as was seen in MCs in skin before treatment with CsA, were rarely observed (Fig. 1b).

The relationship between MCs and nerve fibres

Immunoreactivity for protein gene product 9.5 in lesional skin of AD patients was seen in the epidermis, dermis and around vessels and cutaneous adnexa. In sections of skin taken prior to CsA therapy, counterstaining with toluidine-blue following immunostaining with protein gene product 9.5 showed the close apposition of MCs to peripheral nerve fibres mainly in the perivascular area of the upper dermis (Fig. 2a). Nerve fibres were often surrounded by several MCs (Fig. 2b). In the lower dermis, many trespassing nerve bundles were also immunoreactive for protein gene product 9.5. Lesional skin taken before CsA treatment showed invasion or attachment of MCs to those nerve bundles (Fig. 2c, d). In contrast, such close association between MCs and cutaneous dermal nerve fibres seen in untreated lesional skin was not observed in the skin of AD patients after CsA treatment. The intimate topographical relationship between MCs and nerve fibres in untreated lesional skin was amply confirmed by ultrastructural studies. MCs showing degranulation processes were in close or direct proximity to nerve bundles (Fig. 3a, b), and some MCs showed close apposition to Schwann cells (Fig. 3c). These findings were never observed in any sections of lesional skin from CsA-treated AD patients.
DISCUSSION

It has been recognized for some time that the beneficial effects of CsA in the treatment of patients with AD can be attributed primarily to inhibition of T-helper cell activation, which results in the suppression of cytokine production, such as IL-2, IL-4 and IL-5 (14). CsA also indirectly inhibits the growth and differentiation of B lymphocytes and the functional activities of mononuclear phagocytes, Langerhans’ cells and eosinophils (1). Furthermore, our recent immunohistochemical study revealed that CsA may play a therapeutic role via effects on the cutaneous nervous system through altered innervation and neuropeptide expression in lesional skin of AD (24). In addition to these previously reported modes of CsA action, the present morphological study offers a strong indication that CsA may exert its clinical efficacy for AD by inhibiting MC activation and by alterations of a topographical relationship between MCs and cutaneous nerves in lesional skin, suggesting a new aspect of the effects of CsA in the management of the disease.

In allergic diseases, exposure of sensitized subjects to specific allergens causes the activation of tissue MCs, and a subsequent immediate-type hypersensitivity response and, in some individuals, a late phase response, which may also be involved in the pathogenesis of AD (25). It is known that there is enhanced histamine release by cutaneous MCs specifically upon immunologic challenge of AD patients compared with healthy controls (26). MCs containing the proteinases tryptase and chymase in their secretory granules are the predominant MC type in normal human skin, but MCs containing only tryptase have been reported to be significantly increased in lesional AD skin (27). Morphologically, human cutaneous MCs in lichenified lesions of AD patients show a significant increase in number accompanied by accelerated degranulation (28, 29), and a unique cluster formation by activated MCs, a feature characteristic of obstinate cases of AD (30). MCs are thus undoubtedly involved in the pathophysiology of AD.

We have demonstrated in this study that the number of MCs in lesional AD skin remained unchanged before and after 1 month of oral CsA administration, in spite of apparent clinical and histological improvement. This result seems to disagree with a previous report that numbers of mucosal MC were diminished in CsA-treated animals exhibiting graft-vs-host disease or helminth infections (31). This apparent discrepancy may result from several different factors in these studies, including types of diseases, the species and organs examined, the total dose of CsA administered and the duration of therapy. However, it is difficult to draw a conclusion at this time regarding the effect of CsA on the MC population in AD skin because of the low number of biopsies studied. The presence of MCs in lesional AD skin after CsA treatment may partially

Acta Derm Venereol (Stockh) 78
the stable granule population, a decrease in homogeneous granules indicating an initial stage of degranulation, and the disappearance of adjacent granule fusion and subsequent exocytosis of granules after CsA treatment provide the first ultrastructural evidence of the effects of CsA on the inhibition of MC activation processes in AD skin. These findings support previous in vitro studies on the inhibitory effect of CsA on the immunologic activation of MCs (1, 15). Stellato et al. (15) reported that CsA rapidly and irreversibly inhibits the release of preformed (histamine) and of de novo synthesized (prostaglandin D2) mediators from purified human skin MCs challenged with anti-IgE. It is interesting to note that, in that study, CsA exerted no inhibitory effect on substance P-induced histamine release from MCs, suggesting that the inhibitory effect of CsA has a high degree of selectivity depending on the nature of the stimulus. In addition, MCs are able to produce a variety of cytokines, such as IL-4, IL-5, IL-6, tumour necrosis factor-α and interferon-γ, which are extensively involved in modulating inflammatory responses in the skin (1). TNF-α is an especially important determinant of inflammatory cell–endothelial cell adhesive interactions during the genesis of cellular inflammation in the skin (34), and within MC granules TNF-α is rapidly released into the extracellular space upon degranulation. Wershil et al. (16) reported that CsA interferes with the pathogenesis of IgE-, MC- and cytokine-dependent inflammatory reactions by inhibiting IgE-dependent TNF-α mRNA production and thus the synthesis of TNF-α protein. Taken together, the possibility that CsA may ameliorate disturbances of cell-mediated immunity in AD by suppressing the release of histamine, lipid mediators, active proteinases and cytokines from MCs should be considered. Our ultrastructural findings in this study support the inhibitory effects of MC activation by CsA.

To our knowledge, this is the first study in which alterations of MC–nerve relationships following CsA therapy of AD lesional skin have been observed using immunohistochemical and ultrastructural methods. The close interaction between MCs and cutaneous nerves has long been recognized. Electrical stimulation of nerve fibres or various neuropeptides antidromically released from peripheral nerve fibres induces MC degranulation (8, 35). Although the close topographical relationship of cutaneous nerve fibres or the anatomical direct contact of neuropeptide-containing sensory nerves with MCs has already been described (36, 37), the exact role of this interaction remains to be elucidated. Sugiuwa et al. (9) observed MC invasion into peripheral nerves in 9 of 10 AD lesional skin specimens at the ultrastructural level. They proposed that the invasion of MCs showing degranulation into dermal nerves may be related to provoking or aggravating the itch in AD. Our immunohistochemical observation revealed the close apposition of MCs to peripheral nerve fibres mainly in the perivascular area of the upper dermis. Taking into account the decrease in density of perivascular nerve fibres in CsA-treated AD skin compared with AD skin prior to treatment (24), lack of this apposition between MCs and perivascular nerves after CsA therapy may be due to the effect of CsA on the innervation in lesional AD skin. In addition, the invasion of MCs into trespassing nerve bundles was observed in the lower dermis of AD lesional skin. The close association between MCs and unmyelinated dermal nerves or Schwann cells was further confirmed by electron microscopy. These findings support the concept that interactions between MCs and the cutaneous nervous system may play an important role in the pathogenesis of AD.

Fig. 3. Transmission electron micrographs of the intimate relationship between MC and nerves in AD lesional skin before CsA therapy. (a) Transversely cut nerve fibres (N) in close apposition to a mast cell (M) containing degranulated specific granules (arrow-heads). Note that villous projections (V) of the MC are remarkably extended. S: Schwann cell (b) Mast cells (M) adjacent to a longitudinally cut nerve fibre (N). (c) A mast cell (M) in direct contact with a Schwann cell (S). Note a nerve fibre (N) situated near the Schwann cell and an axon (arrow-head) enveloped by the cytoplasm of the Schwann cell.

We observed visible ultrastructural alterations of MC-specific granules in CsA-treated AD skin compared with AD skin prior to treatment. Our observations of an increase in

Acta Derm Venereol (Stockh) 78
However, this intimate interrelation of MCs to nerves was not recognized at all in either AD case examined after 1 month of CsA therapy. The possibility that the changes seen in this study are not directly due to CsA but simply a non-specific effect of resolution of AD cannot be excluded at present. Effects which are specific to CsA and not a non-specific effect of lesional clearance could be demonstrated by studying biopsies taken a short time after starting CsA, although biopsies were taken after a month of CsA treatment in our study. A comparison with the findings in the patients treated with other methods, such as topical steroids, has also to be performed. Nevertheless, our results suggest that CsA may have more potential modes of action for the management of AD than hitherto suspected, and we believe that this study should be one step in clarifying the significance of the MC - nerve relationship in AD and the mechanism of possible effects on these interactions by CsA.

REFERENCES

Acta Derm Venereol (Stockh) 78