Eccrine Sweat Glands: Expression of Transforming Growth Factor-β and Bone Morphogenetic Protein Type I Receptors and Their Intracellular Signalling Smad Proteins

UWE WOLLINA1, DIRK LANGE1,2, PETER TEN DIJKE2, CARL-HENRIK HELDIN2 and KEIKO FUNA3

1Department of Dermatology, Friedrich Schiller University of Jena, Germany, 2Ludwig Institute for Cancer Research, Uppsala Branch, Uppsala, Sweden and 3Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Göteborg, Sweden

The transforming growth factor-β (TGF-β) superfamily is thought to be involved in the regulation and control of growth and differentiation. These growth factors signal through transmembrane serine/threonine kinase receptors. The activation of type I receptor kinase phosphorylates a family of intracellular signalling proteins called Smads. In the present study, we wanted to localize type I and type II receptors and Smad proteins in human eccrine sweat glands. Expression of transforming growth factor-β type I receptor was restricted to myoepithelial cells only, whereas bone morphogenetic protein receptor IA was found selectively within the duct epithelium of both the dermal portion and the acrosyringium. Bone morphogenetic protein receptor IB antibody gave a faint staining of secretory epithelium and myoepithelial cells. Smad proteins were identified in different parts of the eccrine sweat gland apparatus. In particular, Smad 1 and Smad 3 were located within myoepithelial cells, whereas coils were stained weakly for Smad 1 and Smad 3. Smad 3 protein was also expressed by the duct epithelium. Smad 2, Smad 4, Smad 5, Smad 6 and Smad 7 were not identified in eccrine sweat gland epithelia. Our data provide evidence for transforming growth factor-β/bone morphogenetic protein signalling in the eccrine sweat gland and the selective expression of Smad proteins. Myoepithelial cells and duct cells have been identified as major targets of the transforming growth factor-β pathway. Possible functions are growth inhibition and control of myoepithelial differentiation. Key words: sweat glands; transforming growth factor β; Smad proteins; bone morphogenetic proteins.

(Accepted November 17, 1998.)

U. Wollina, Department of Dermatology, University of Jena, Erfurter Str. 35, DE-07740, Jena, Germany.
E-mail: uwol@derma.uni-jena.de.

MATERIAL AND METHODS

Tissue specimen
A total of 48 formalin-fixed and paraffin-embedded tissue specimens were collected from the files of the Department of Dermatology, University of Jena, Germany. Sections 3 μm thick were cut and collected on silane-coated glass slides.

Preparation of antibodies
Specific antisera against BMPR-IA, BMPR-IB, BMPR-II, TGF-βRI, and Smad 1, Smad 2, Smad 3, Smad 4, Smad 5, Smad 6 and Smad 7 were made against synthetic peptides corresponding to specific parts of the different proteins. Antisera were affinity purified using CNBr-activated Sepharose CL-4B (Pharmacia-LKB) columns with immobilized peptides as described previously (17).

Immunohistochemistry
Sections were deparaffinized, rehydrated in descending alcohol dilutions and immersed in phosphate-buffered saline (PBS). The slides were treated with 0.01% trypsin (T8003, Sigma) in PBS for staining with BMP-receptors and TGF-β-receptors. For immunohistochemistry with the anti-Smad-sera the slides were pre-treated in the microwave three times for 3 min in citrate buffer, pH 6.0. ABC peroxidase immunohistochemistry was performed essentially as described previously (17).

The antibodies were used in the following concentrations: BMP-IA, BMP-IB, BMPR-II, Smad 1 to Smad 5 and Smad 7 3 μg/ml; TGF-βRI 1.5 μg/ml and Smad 6 2 μg/ml. Tissues were then incubated with biotinylated goat anti-rabbit IgG (Vector Laboratories, Burlin-
game CA, USA), followed by incubation with Vectastain ABC Elite complex (Vector Laboratories). The immunoreaction was visualized using 3-amino-9-ethylcarbazole (Merck) as a chromogen in the presence of 0.02% hydrogen peroxide, and finally counterstained with Mayer’s hematoxilin and mounted in glycerol-gelatin. To exclude the non-specific reactions of secondary antibodies or ABC complexes, primary antibody solutions were replaced by 1% bovine serum albumin in PBS. The specificities of the antibodies were confirmed by blocking the immunohistochemical staining, after the antibodies had been pre-incubated with an excess molar ratio of the corresponding antigens.

RESULTS

The eccrine sweat gland is composed of epithelial and myoepithelial cells organized in 3 major segments: the secretory coil, the dermal duct and the epidermal duct or acrosyringium. Each part disclosed a distinct pattern of expression of TGF-β-superfamily type I receptors (transducer) and Smad proteins.

The secretory coils showed a strong reactivity for TGF-β type I receptor which was restricted to myoepithelial cells only (Fig. 1a). Antibodies against BMP receptor IB produced faint staining of secretory epithelium and myoepithelial cells (Fig. 1b; Table I). Smad proteins 1 and 3 were immunolocalized along the luminal surface of epithelial cells of the secretory coil. Smad 1 and Smad 5 were strongly expressed by myoepithelial cells. Staining was seen intracytoplasmatically (Fig. 2a).

The dermal duct is composed of 2 layers of epithelial cells but only the adluminal cells (inner layer) was labelled with antibodies against BMP receptor IA. The dermal duct was completely negative for BMP receptor IB and TGF-β type I receptor. Smad 3 was the only Smad protein which could be immunolocalized in inner dermal duct epithelium (Fig. 2b).

Staining of the acrosyringium provided results similar to the dermal duct, i.e. expression of BMP receptor IB and Smad 3. Antisera against Smad 2, Smad 4, Smad 6 and Smad 7 did not stain any part of the eccrine sweat gland (Table I).

DISCUSSION

The TGF-β signalling pathway has been related to embryogenesis, proliferation and differentiation control of a variety of different cells (1, 2). BMP 4 was found to be expressed in the dorsal neural tube and induce the expression of Msx2 in adjacent skin and mesenchyme. BMP 4 signalling may be an essential step for the establishment of the dorsal midline structures (18). BMP 2 and 4 play an active part in inhibition of cell growth in hair follicles and the onset of trichocyte-specific genes (19). In the developing epidermis, expression of BMP 6 coincides with the onset of stratification (20). TGF-β1 and TGF-β2 localized around hair follicles and skin glands during skin development seem to be involved in the regulation of morphogenesis and growth of skin appendages (21). The coordinated expression of several members of the TGF-β superfamily is required to control the progression of specific cell types through their differentiation pathway.

In the present study we investigated whether selected type I receptors and 7 different Smad proteins, responsible for intracellular signalling, were expressed by human sweat gland epithelium. Activation of type I receptors (transducer) triggers the assembly of heterodimeric complexes of the two types of Smads, the pathway-restricted and the common mediator.

| Table I. Expression of Smad proteins, bone morphogenetic-protein (BMP) receptor-IA/-IB, and transforming growth factor (TGF)-β type I receptor in eccrine sweat glands |
|-----------------|--------|--------|--------|--------|
| Receptor proteins | SC | ME | DD | AC |
| TGF-β type I receptor | – | + | – | – |
| BMP-receptor IA | – | – | + | + |
| BMP-receptor IB | (+) | (+) | – | + |
| Smad proteins | | | | |
| Smad1 | (+) | + | – | – |
| Smad2 | – | – | – | – |
| Smad3 | (+) | – | + | + |
| Smad4 | – | – | – | – |
| Smad5 | – | + | – | – |
| Smad6 | – | – | – | – |
| Smad7 | – | – | – | – |

SC, secretory coil; ME, myoepithelial cells; DD, dermal duct; AC, acrosyringium.

Fig. 1. Localization of transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) receptors in eccrine sweat glands. (a) Strong TGF-β-R1 expression in myoepithelial cells. (b) BMP receptor IB is weakly expressed by myoepithelial cells.

Acta Derm Venereol (Stockh) 79
it is reasonable to conclude that dermal BMP controls myoepithelial differentiation. In transformed or modified myoepithelial cells, however, as in mixed skin tumours, BMP expression has been observed (25).

The secretory epithelium expressed neither TGF-β type 1 receptor nor BMP receptor IA, but stained weakly for BMP receptor IB. Secretory coil epithelium disclosed only a faint staining for Smad proteins Smad 1 and 3, in particular on the luminal site. Since the BMP 2/4 signalling via BMP receptor type II and type IB, which stimulates Smad 1 intracellularly has been linked to neural differentiation and ventral mesoderm induction, the immunolocalization of BMP receptor IB and Smad 1 in secretory coils may be in favour of the hypothesis of a mesectodermal origin of eccrine glands (27, 28).

The dermal duct and the acrosyringium stained for BMP receptor IA and Smad 3. Both activin and TGF-β ligands have been demonstrated in the duct epithelium and Smad 3 is their major transducer. Epidermal BMP 2 and BMP 4 may stimulate BMP receptor IA by binding to activin receptors and inducing growth inhibition by Smad 3 (1, 2). Interestingly, none of the inhibitory Smads, such as Smad 6 or Smad 7, have been detected in the eccrine gland.

There are few data on this pathway in other skin appendages. TGF-βI has been demonstrated in murine hair follicles together with TβRI and TβRII. The latent TGF binding protein (LTBP) was demonstrated in sebaceous glands (29, 30). In human skin TGF-β2 but not TGF-βI is expressed by epidermal keratinocytes, hair follicles and sebaceous glands, but expression of TβRI and TβRII is weak. In basal cell carcinomas TGF-β2 may be absent (15).

Our results suggest that TGF-β signalling is of importance for human eccrine sweat glands. The type of expression and distribution, however, is unique among skin appendages. Whereas the dermal duct and the acrosyringium show close similarities with respect to the expression of TGF-β superfamily receptors and Smad proteins, the secretory coil including myoepithelial cells are different. Myoepithelial cells and duct cells have been identified as major targets of the TGF-β pathway. But myoepithelial cells seem to be regulated exclusively by BMP and TGF-β. The BMP regulation of myoepithelial cells could be responsible for the change of their phenotype in hidradenomas and mixed tumours of skin to chondroid cells (28). Our findings also support the hypothesis of a mesectodermal origin of eccrine sweat glands in contrast to hair follicles or sebaceous glands (cf. 27, 28).

ACKNOWLEDGEMENT
This study was supported by a grant from LEOPOLDINA (Halle/S.) to DL.

REFERENCES
4. Liu XD, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF. Transforming growth factor beta induced phosphory-

22. Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T. Smad1 and Smad5 act downstream of intracellular sig-

Acta Derm Venereol (Stockh) 79