Sir,

Epidermal growth factor receptors (EGFR) play an important role in the development and progression of many solid tumours. Numerous cell functions, such as cell proliferation, differentiation and angiogenesis, depend on EGFR activation. Moreover, EGFR is over-expressed in many solid tumours (e.g. up to 80% of colorectal cancer and up to 93% of non-small-cell lung cancer) and is an important target structure in tumour therapy of patients refractory or intolerant to chemotherapy. The chimeric EGFR-blocking monoclonal antibody cetuximab, the fully human EGFR-blocking monoclonal antibody panitumumab, and the low-molecular weight tyrosine kinase inhibitors gefitinib and erlotinib are the most frequently used EGFR inhibitors. As EGFR is also expressed in normal epidermis, sweat glands, sebaceous glands and the outer root sheath of the hair follicle, many cutaneous side-effects are frequently encountered during its therapeutic blockade. Acneiform skin reactions are most common, but xerosis, hair and nail changes have also been described (1–3).

We report here the case of a 43-year-old woman who developed a clinically distinct, yellowish papular eruption within the borders of an otherwise typical acneiform skin eruption on her cheeks and sporadically on the chest during treatment change from cetuximab to panitumumab.

CASE REPORT

A 43-year-old woman was diagnosed with colorectal adenocarcinoma and ovarian, pulmonary and hepatic metastases in October 2004. Her skin had always been healthy. Anti-neoplastic treatment was started with oxaliplatin and 5-fluoro-uracil. Due to tumour progression, the therapy was switched to second-line chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, a third-line tumour therapy with chemotherapy with bevacizumab and 5-fluoro-uracil. Because of further local progression, an...
Acneiform skin eruptions are the most frequent cutaneous side-effects of an EGFR blockade and are therefore well characterized. In most patients, this acneiform eruption is more or less confined to the seborrhoeic areas. These follicular skin lesions are not preceded by visible comedones and therefore cannot be considered as acne vulgaris. In contrast to acneiform eruptions caused by other drugs, EGFR inhibitor-induced skin lesions may be accompanied by pruritus (1).

Other recognized skin toxicities following EGFR inhibition are xerosis, teleangiectasia, hyperpigmentation, fissures on hands and feet, mucositis including intraoral aphthosis and stomatitis, hair changes (e.g. curlier, finer hair on scalp, growth and curling of eyelashes and eyebrows) and nail changes, such as paronychia. Urticarial and anaphylactoid reactions have also been observed during intravenous administration of cetuximab, but are rarely reported in Europe (5, 7, 8).

The exact mechanism of the skin reactions after EGFR inhibitors is unknown, although most experts will agree on the consequence of inhibition of EGFR signalling on epidermal and adnexal epithelium (8). Increased apoptosis, altered keratinocyte differentiation, thinning of the stratum corneum and an inflammatory infiltrate, as well as enlarged hair follicles and keratin plugs are well-described histological features of EGFR-induced skin eruptions (5). EGFR-targeted therapies may directly affect the immune system by unblocking cutaneous chemokine production, resulting in leukocyte chemotaxis and infiltration in the skin (1).

We only can speculate about the pathogenesis of our patient’s distinctive reaction pattern. We assume a destructive abscessing folliculitis, with a rupture of the acroinfundibulum as the initial event, corresponding to the clinical appearance of an acneiform eruption. Sustained by the patient’s refusal of systemic therapeutic intervention, the destructive inflammatory process continued until complete destruction of the affected follicular sebaceous unit. Resorption of the destroyed epithelial tissue and sebaceous glands requires accumulation of macrophages, ultimately resulting in a histiocytic, partly xanthomatous clearing reaction. This xanthomatous clearing reaction causes the clinically distinctive, yellowish appearance. The time course of events suggests panitumumab as the main causative agent for this reaction, but other factors, such as the preceding cetuximab treatment or intermittent topical therapy, are also possible.

Differential diagnosis for our patient, if the clinical context allowed any, would be eruptive xanthoma. This would also comprise the closest histological differential diagnoses, but eruptive xanthoma is neither perifollicular localized nor predominantly present on the cheeks. Potential treatment options for the disseminated follicular xanthomas would be ablative lasers such as CO₂ and Er:YAG-laser, or the semi-selective coagulating argon-laser.

REFERENCES