Quality of Life in Greek Patients with Autoimmune Bullous Diseases Assessed with ABQOL and TABQOL Indexes

Aikaterini PATSATSI1, Miltiadis KOKOLIOS1, Aikaterini KYRIAKOU1, Foteini LAMPROU1, Despoina STYLIANIDOU1, Apostolos TSAPAS2, Dimitrios G. GOULIS3, Dedee F. MURRELL4 and Dimitrios SOTIRIADIS1

12Dermatology Department, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road 56403, N, Efkarida, Thessaloniki; 1Clinical Research and Evidence-Based Medicine Unit and 2Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece, and 3Department of Dermatology, St George Hospital, University of New South Wales, Sydney, NSW, Australia. E-mail: katerinapatatsi@gmail.com, apatsats@auth.gr

Accepted Jun 28, 2017; Epub ahead of print Jun 29, 2017

Autoimmune bullous diseases (AIBD) place a significant burden on patients’ quality of life (QoL). Specific QoL instruments (1, 2), Autoimmune Bullous Diseases Quality of Life (ABQOL) (1) and Treatment Autoimmune Bullous Diseases Quality of Life (TABQOL) (2), were introduced to quantify the impact of AIBD and its treatment on patients’ well-being. The aim of this study was to assess QoL in Greek patients with AIBD, using the ABQOL and TABQOL questionnaires.

MATERIALS AND METHODS

Patients with newly diagnosed AIBDs were recruited consecutively. Ethical approval was obtained from the local Institutional Review Board and all patients signed an informed consent form. In patients with AIBD in the pemphigus spectrum, the clinical extent and severity were measured with Pemphigus Disease Area Index (PDAI) (3) and Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) (4). Thus, in patients with AIBD in the pemphigoid spectrum, the clinical extent and severity were measured with BPDAI and ABSIS. The questionnaires were handed in at 4 different time points:

1. The time point of established diagnosis, at which the patient had the typical clinical picture and no therapy had yet been administered, was defined as baseline (BL).
2. Time point 2 was the point at which the patients presented with no new lesions (NL).
3. Time points 3 and 4 were defined as 1 (M1) and 3 months (M3) after baseline, respectively.

Dermatology Life Quality Index (DLQI) and ABQOL were completed at all 4 time points (BL, NL, M1 and M3) before the patients were reviewed by the physician. TABQOL was handed out and completed at time points 2, 3 and 4 (NL, M1, M3), as at baseline patients had not yet been under treatment and this is a treatment-based questionnaire.

Statistical analysis of the data was performed using the software Statistical Package for Social Sciences (SPSS), version 22.0 (SPSS, Inc., Chicago, IL, USA). All tests were 2-sided and the significance level was chosen to be α = 0.05. Spearman’s = r, Friedmann’s = χ², Wilcoxon’s = z, Bonferroni adjustment on the results you get from the Wilcoxon tests because you are making multiple comparisons; new significance level of 0.05/3=0.017.

RESULTS

Fifty-three patients were invited into the study; of these, 50 agreed to be included and completed the study. Patients were studied and analysed, after they had been divided into 2 groups based on the disease type (intra-epidermal or subepidermal AIBD).

Intraepidermal AIBD (pemphigus spectrum)

At baseline, DLQI was strongly and significantly correlated with both ABSIS (r = 0.677, p = 0.006) and PDAI (r = 0.559, p = 0.03). Thus, ABQOL was significantly correlated with PDAI (r = 0.559, p = 0.03), but not with ABSIS (r = 0.490, p = 0.064). Moreover, ABQOL was significantly correlated with the initial titres of anti-desmoglein 1 (DSG1) (r = 0.542, p = 0.037), but not with the titres of anti-DSG3 (r = 0.405, p = 0.134). ABQOL and DLQI were significantly correlated (r = 0.712, p = 0.003).

A marginal, statistically significant decrease was observed in the median DLQI scores when values at selected consecutive time points were compared (χ²=6.143, p = 0.046). However, ABQOL scores were significantly different between consecutively selected time points

Table I. Descriptive statistics for DLQI, ABQOL and TABQOL during weeks of evaluation based on the disease type

<table>
<thead>
<tr>
<th>Variables</th>
<th>BL or NL Median (range)</th>
<th>M1 Median (range)</th>
<th>M3 Median (range)</th>
<th>Friedman test; p-value</th>
<th>Wilcoxon signed-rank test*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BL or NL – M1</td>
<td>M1 – M3</td>
<td>BL or NL – M3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraepidermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLQI</td>
<td>7.0 (2.0–28.0)</td>
<td>5.0 (0.0–18.0)</td>
<td>4.0 (0.0–17.0)</td>
<td>χ² = 6.143; p = 0.046*</td>
<td>z = –1.783; p = 0.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –0.882; p = 0.378</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –2.274; p = 0.023</td>
</tr>
<tr>
<td>ABQOL</td>
<td>17.0 (4.0–40.0)</td>
<td>7.0 (1.0–33.0)</td>
<td>9.0 (0.0–22.0)</td>
<td>χ² = 15.148; p = 0.001*</td>
<td>z = –2.607; p = 0.009*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –0.255; p = 0.799</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –3.081; p = 0.002*</td>
</tr>
<tr>
<td>TABQOL</td>
<td>9.0 (1.0–19.0)</td>
<td>8.0 (2.0–27.0)</td>
<td>10.0 (3.0–20.0)</td>
<td>χ² = 4.037; p = 0.133</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Subepidermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLQI</td>
<td>5.0 (0.0–28.0)</td>
<td>2.0 (0.0–21.0)</td>
<td>2.0 (0.0–12.0)</td>
<td>χ² = 26.578; p < 0.001*</td>
<td>z = –2.890; p = 0.004*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –1.392; p = 0.164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –4.519; p < 0.001*</td>
</tr>
<tr>
<td>ABQOL</td>
<td>12.0 (2.0–35.0)</td>
<td>7.0 (0.0–26.0)</td>
<td>4.0 (0.0–16.0)</td>
<td>χ² = 31.924; p < 0.001*</td>
<td>z = –3.828; p < 0.001*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –1.392; p = 0.164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z = –4.519; p < 0.001*</td>
</tr>
<tr>
<td>TABQOL</td>
<td>7.0 (0.0–23.0)</td>
<td>6.0 (1.0–29.0)</td>
<td>6.0 (1.0–29.0)</td>
<td>χ² = 1.256; p = 0.534</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Statistically significant.

#This is an open access article under the CC BY-NC license. www.medicaljournals.se/acta

doi: 10.2340/00015555-2737

Acta Derm Venereol 2017; 97: 1145–1147
(χ²=15.148, p=0.001). TABQOL, which relates to the
treatment effects, showed no statistically significant dif-
fferences among selected consecutive time points up to
M3 (χ²=4.037, p=0.133) (Table I).

Subepidermal AIBD (pemphigoid spectrum)

At baseline, DLQI was also significantly correlated
with BPDAI (r=0.730, p<0.001) and ABSIS (r=0.480,
p=0.004). Thus, ABQOL was significantly correlated
with both BPDAI (r=0.553, p=0.001) and ABSIS
(r=0.460, p=0.005). There was no statistically signi-
cificant correlation of either ABQOL or DLQI to the
initial titres of anti-BP180 and anti-BP230. ABQOL and
DLQI were significantly correlated (r=0.816, p<0.001).
A statistically significant decrease was observed
at the median DLQI scores when values at consecu-
tive time points were compared (χ²=26.578, p<0.001).
Thus, ABQOL scores were also significantly decreased
(χ²=31.924, p<0.001). Regarding TABQOL, no statis-
tically significant differences between selected consecu-
tive time points up to M3 were observed (χ²=1.256,
p=0.534) (Table I).

DISCUSSION

AIBD may severely affect QoL. A German study used
the dermatology-specific questionnaire DLQI for the first
time in pemphigus patients. The mean DLQI for pem-
phigus was higher than the mean scores for other AIBD,such as bullous pemphigoid (5). Last year, in a Brazilian
study, the medians of total DLQI scores of patients with
pemphigus and pemphigoid diseases did not differ sig-
ificantly from each other (6). In our study, we observed
a significant impairment in QoL at baseline and a rather
heavier impact in the group with intraepidermal AIBD.

The first study that was designed to develop a disease
specific for AIBD QoL instrument was conducted in
Australia. In this development and validation study,
there was a low correlation between ABQOL and disease
activity measures and a moderate correlation between
ABQOL and DLQI (1). In our study, ABQOL and DLQI
were significantly correlated with disease activity as it
was captured by ABSIS, PDAI or BPDAI in all patients.
According to Boulard et al. (7), cut-off values of 15
and 45 for PDAI and 17 and 53 for ABSIS, distinguish
moderate, significant and extensive pemphigous forms.
The mean PDAI in our patients was 35.80
and 45 for PDAI and 17 and 53 for ABSIS, distinguish
were significantly correlated with disease itself. TABQOL was developed and validated
to allow a quantitative measurement of treatment-based
QoL impact in AIBDs (2). TABQOL had a high correla-
tion with ABQOL and a moderate correlation with DLQI.
In the above-mentioned study, the majority of patients
were in remission and during routine follow-up (2).

We should emphasize that ABQOL, in pemphigus
patients, showed a significant correlation with clinical
severity and a significant decrease from the first month
of treatment. This was not captured by DLQI scores.
With this study, we assessed for the first time the QoL in
Greek patients with various AIBD using disease-specific
QoL measurement tools. There were no difficulties for
the patients to comprehend and answer the questions and
even more, no patient refused to complete the tool at the
consecutive time points needed. Applying pemphigus-
specific measures, may allow clinicians to recognize
which aspects of AIBD most affect a patient and provide
a personalized care. Moreover, ABQOL and TABQOL
may be used as an additional end-point in clinical trials,
in order to better monitor and report the impact of side-
effects of therapeutic interventions.

REFERENCES

1. Sebaratnam DF, Hanna AM, Chee SN, Frew JW, Venugopal SS,
for autoimmune bullous disease: the Autoimmune Bullous
Disease Quality of Life questionnaire. JAMA Dermatol 2013;
149: 1186–1191.
2. Tjokrowidjaja A, Daniel BS, Frew JW, Sebaratnam DF, Hanna
AM, Chee S, et al. The development and validation of the
treatment of autoimmune bullous disease quality of life
questionnaire, a tool to measure the quality of life impacts
of treatments used in patients with autoimmune blistering
3. Rosenbach M, Murrell DF, Bystryn JC, Dulay S, Dick S,
Fakharzadeh S, et al. Reliability and convergent validity of
two outcome instruments for pemphigus. J Invest Dermatol
4. Pflutze M, Niedermeyer A, Hertl M, Eming R. Introducing a
novel Autoimmune Bullous Skin Disorder Intensity Score
for pemphigus vulgaris. Results from the German
Bullous Skin Disease (BSD) Study Group. J Dtsch Dermatol
2009; 149: 4–11.
5. Mayrhofer F, Hertl M, Sinkgraven R, Sticherling M, Pfeiffer C,
Zillikens D, et al. Significant decrease in quality of life in
patients with pemphigus vulgaris. Results from the German
Bullous Skin Disease (BSD) Study Group. J Dtsch Dermatol
6. Penha MA, Farat JG, Miot HA, Barrassiera SR. Quality of life
index in autoimmune bullous dermatosis patients. An Bras
7. Boulard C, Duvert Lehebrel S, Picard-Dahan C, Kern JS, Zam-
bruino G, Feliciani C, et al. Calculation of cut-off values based on

www.medicaljournals.se/acta
the Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Pemphigus Disease Area Index (PDAI) pemphigus scoring systems for defining moderate, significant and extensive types of pemphigus. Br J Dermatol 2016; 175: 142–149.
