Premature Aging Syndrome, Penttinen Type: Report of a Chinese Case with a \textit{PDGFRB} Mutation

Zhiyong ZHANG1, Shuguang ZHENG2, Song ZHENG3, Yan Yan WANG4, Xue-Gang XU1,*, Xing-Hua GAO3 and Hong-Duo CHEN3

1Department of Nuclear Medicine and *Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 2Department of Radiology, the People’s Hospital of Liaoning Province, and 3Department of Dermatology, No.1 Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, China. *E-mail: xuxuegang2749290@163.com.

Accepted Jun 14, 2018; Epub ahead of print Jun 25, 2018

Premature aging syndrome, Penttinen type (Penttinen syndrome, OMIM: 601812), is a rare progeroid syndrome characterized by a prematurely aged appearance, acro-osteolysis, loss of subcutaneous fat, translucent skin with keloid-like lesions, and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.

CASE REPORT

The patient was an 18-year-old male who was born with a generally normal appearance. At 2 years, he was noted to have frequent micturition and an open anterior fontanel. A cranial CT scan indicated hydrocephalus. At about 4 or 5 years, he presented with a large anterior fontanel and flat occiput, broad thumbs and halluces, developmental delay, and limited range of motion of the fingers. Gradually, his skin became very thin, dry, and translucent with diffuse hyperpigmentation and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.

Premature Aging Syndrome, Penttinen Type: Report of a Chinese Case with a \textit{PDGFRB} Mutation

Zhiyong ZHANG1, Shuguang ZHENG2, Song ZHENG3, Yan Yan WANG4, Xue-Gang XU1,*, Xing-Hua GAO3 and Hong-Duo CHEN3

1Department of Nuclear Medicine and *Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 2Department of Radiology, the People’s Hospital of Liaoning Province, and 3Department of Dermatology, No.1 Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, China. *E-mail: xuxuegang2749290@163.com.

Accepted Jun 14, 2018; Epub ahead of print Jun 25, 2018

Premature aging syndrome, Penttinen type (Penttinen syndrome, OMIM: 601812), is a rare progeroid syndrome characterized by a prematurely aged appearance, acro-osteolysis, loss of subcutaneous fat, translucent skin with keloid-like lesions, and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.

CASE REPORT

The patient was an 18-year-old male who was born with a generally normal appearance. At 2 years, he was noted to have frequent micturition and an open anterior fontanel. A cranial CT scan indicated hydrocephalus. At about 4 or 5 years, he presented with a large anterior fontanel and flat occiput, broad thumbs and halluces, developmental delay, and limited range of motion of the fingers. Gradually, his skin became very thin, dry, and translucent with diffuse hyperpigmentation and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.

Premature Aging Syndrome, Penttinen Type: Report of a Chinese Case with a \textit{PDGFRB} Mutation

Zhiyong ZHANG1, Shuguang ZHENG2, Song ZHENG3, Yan Yan WANG4, Xue-Gang XU1,*, Xing-Hua GAO3 and Hong-Duo CHEN3

1Department of Nuclear Medicine and *Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 2Department of Radiology, the People’s Hospital of Liaoning Province, and 3Department of Dermatology, No.1 Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, China. *E-mail: xuxuegang2749290@163.com.

Accepted Jun 14, 2018; Epub ahead of print Jun 25, 2018

Premature aging syndrome, Penttinen type (Penttinen syndrome, OMIM: 601812), is a rare progeroid syndrome characterized by a prematurely aged appearance, acro-osteolysis, loss of subcutaneous fat, translucent skin with keloid-like lesions, and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.

CASE REPORT

The patient was an 18-year-old male who was born with a generally normal appearance. At 2 years, he was noted to have frequent micturition and an open anterior fontanel. A cranial CT scan indicated hydrocephalus. At about 4 or 5 years, he presented with a large anterior fontanel and flat occiput, broad thumbs and halluces, developmental delay, and limited range of motion of the fingers. Gradually, his skin became very thin, dry, and translucent with diffuse hyperpigmentation and other symptoms (1–3). We enrolled one Chinese patient with the characteristic presentations of Penttinen syndrome and identified a \textit{PDGFRB} mutation in this patient.
To identify the causative mutation, whole exome sequencing was performed as reported (4). The Institutional Review Board and the Ethics Committee of No.1 Hospital of China Medical University approved the study. The targeted exon sequences plus flanking sequences were specifically captured and enriched using an array-based hybridization chip (xGen® Exome Research Panel v1.0, Integrated DNA Technologies, CA) followed by HiSeq X10 (Illumina, San Diego, CA) sequencing. The average depth for all targeted exons was 94.49× with coverage of 99.4%. All variants were filtered against several public databases (ExAC, gnomAD, 1000 genomes project). Finally, a heterozygous variant (c.1994T>C; p.Val665Ala) was identified in exon 14 of PDGFRB (platelet-derived growth factor receptor β, GenBank: NM_002609) (Fig. S2a). This variant was detected with a sequencing depth of 34× and a ratio of 0.52, which was not identified in all other family members and confirmed to be a de novo variant via Sanger sequencing (Fig. S2b–e). Thus the diagnosis of Penttinen syndrome is determined in our patient.

DISCUSSION

Penttinen et al. (1) first described a patient presenting with a prematurely aged appearance; delayed bone maturation and dental development; pronounced acro-osteolysis with brachydactyly; and distinctive cutaneous findings, including loss of subcutaneous fat. Later Zufferey et al. (2) reported 2 cases with similar presentations. Johnston et al. (3) reported another 2 cases and identified a point mutation of PDGFRB in 4 reported cases of Penttinen syndrome. Here we report a patient with the characteristic presentations of Penttinen syndrome. Besides skin and skeletal abnormalities, he had hydrocephalus since early childhood, remarkable deformities of the ventricular system, leukoencephalopathy, and cerebellar atrophy, among other anomalies. His neurological atrophy and diastolic cardiac dysfunction did not match his age and needed close follow-up to determine whether they posed a risk of premature death.

PDGFRB is a typical tyrosine kinase receptor (6). Binding of PDGFs to PDGFRB leads to the autophosphorylation of PDGFRB and subsequent activation of the downstream pathways, including mitogen-activated protein kinases (MAPKs), phospholipase Cy (PLCy), signal transducers and activators of transcription (STAT), and phosphatidylinositol-3 kinase (PI3K) (6, 7). Mutations in PDGFRB have been documented in a wide range of phenotypes. Loss-of-function mutations in PDGFRB lead to idiopathic basal ganglia calcification-4 (IBGC4) (8). PDGFRB mutations also cause infantile myofibromatosis (IM), a common benign fibrous tumor of soft tissues (9). Recently, germline mutations in PDGFRB have been associated with a novel overgrowth syndrome, named Kosaki overgrowth syndrome (10, 11). The PDGFRB gene has also been found to fuse with more than 36 other genes, and they are involved in many myeloid and/or lymphoid neoplasms (12).

PDGF signaling has been implicated in organ fibrosis and is assumed to play a role in driving the proliferation of cells of mesenchymal origin (7, 13). Johnston et al. (3) identified the downstream effectors of the p.Val665Ala PDGFRB variant, including STAT3 and PLCγ1. STAT3 was proved to contribute to keloid pathogenesis by promoting collagen production, cell proliferation and migration (14). Craggs et al. (15) revealed increased expression of PDGFRB in pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Taken together, we hypothesize that excess, ligand-independent phosphorylation of PDGFRB leads to the activation of downstream signaling and causes the presentations of Penttinen syndrome.

ACKNOWLEDGMENTS

We thank the patient and his family. This work was supported by National Natural Science Funding of China (code: 81602740) and the National Key Research and Development Program of China (No.2016YFC0901504).

The authors have no conflicts of interest to declare.

REFERENCES