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SIGNIFICANCE
Aryl hydrocarbon receptor (AHR) is a chemical sensor ac-
tivated by external and internal ligands. Oxidative AHR li-
gands induce the production of reactive oxygen species. 
However, antioxidative phytochemical AHR ligands inhibit 
ROS generation via activation of nuclear factor-erythroid 
2-related factor-2, which is a master switch for antiox-
idative signalling. In addition, AHR signalling upregulates 
filaggrin expression via OVOL1 transcription factor and 
accelerates epidermal terminal differentiation. This AHR-
OVOL1 system is capable of counteracting the skin barrier 
dysfunction in T helper type 2-shifted inflammation. The-
refore, antioxidative phytochemicals targeting AHR are po-
tentially beneficial for barrier-disrupted skin diseases, such 
as atopic dermatitis.

Aryl hydrocarbon receptor (AHR) is a chemical sensor 
that is expressed abundantly in epidermal keratino-
cytes. Oxidative AHR ligands induce the production of 
reactive oxygen species. However, antioxidant AHR li-
gands inhibit reactive oxygen species generation via 
activation of nuclear factor-erythroid 2-related fac-
tor-2, which is a master switch for antioxidative signal-
ling. In addition, AHR signalling accelerates epidermal 
terminal differentiation, but excessive acceleration by 
oxidative ligands, such as dioxins, may induce chlo-
racne and inflammation. However, antioxidative phy-
tochemical ligands induce the beneficial acceleration 
of epidermal differentiation that repairs skin barrier 
disruption. The upregulated expression of differentia-
tion molecules, such as filaggrin, is mediated via the 
AHR-OVOL1 axis. This AHR-OVOL1 system is capable 
of counteracting skin barrier dysfunction in T-helper 
type 2-shifted inflammation. This article reviews the 
dynamic and multifaceted role of AHR in epidermal 
biology and discusses the potential use of antioxidati-
ve phytochemical ligands for AHR in inflammatory skin 
diseases, such as atopic dermatitis.
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Atopic dermatitis (AD) is characterized by chronic 
itch, cutaneous inflammation and dry skin with 

epidermal barrier dysfunction (1–3). Since the discovery 
of T-helper type 1 (TH1) and TH2 immune regulation by 
Mosmann et al. (4), the TH2-polarized immune response 
has been thought to be a cardinal driver in allergic di-
seases including AD (5–9). This notion has been proven 
because blockade of TH2-derived interleukin (IL)-4 and 
IL-13 signalling by a specific anti-IL-4 receptor antibody, 
dupilumab, successfully improves skin inflammation in 
patients with AD (10–12). In addition, TH2-derived IL-
31 is a potent itching-scratching inducer, and the admi-
nistration of anti-IL-31 receptor antibody, nemolizumab, 
improves atopic itching in patients with AD (13–16). 

Genome-wide association studies in different ethnici-
ties have revealed at least 19 susceptible genes, including 
filaggrin (FLG), OVO-like 1 (OVOL1) and IL4/IL13 
(17–22). AD exhibits heterogeneous clinical and labora-
tory manifestations influenced by genetic, environmental 
and social factors (2, 5, 23–26). However, xerosis or dry 
skin due to skin barrier disruption is the most frequent 
clinical sign in AD (23, 25). 

Skin barrier maturation is accomplished by sequential 
and coordinated expression of various terminal diffe-
rentiation proteins, such as FLG and loricrin (LOR) 
(27). In accordance, FLG and LOR expression levels 
have been reported to be reduced in lesioned and non-
lesioned skin in AD (28–30). Loss-of-function mutations 
of FLG have been demonstrated in some patients with 
AD, ranging from 10% to 50% in the Northern European 
and Asian AD population (31–34). Ichthyosis vulgaris is 
also known to be caused by the loss-of function mutation 
of FLG (35). This may explain why AD is significantly 
comorbid with ichthyosis vulgaris (25, 31). However, 
FLG mutations are not found in all patients with AD, 
and they are less common in Southern Europeans (36) 
and are even absent in some African countries (37, 38). A 
humid atmosphere may reduce the contribution of FLG 
mutations to the onset of AD (39). 

Of note, TH2-derived cytokines, IL-4 and IL-13, 
inhibit FLG and LOR expression (29, 30, 40–42). IL-
31 also downregulates FLG and LOR expression (43). 
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Therefore, TH2-polarized inflammatory milieu in AD 
may be more influential in the downregulation of FLG 
expression compared with genetic mutations. In line with 
this notion, topical steroids significantly improve clinical 
inflammatory signs and normalize transepidermal water 
loss in lesional AD skin with the upregulation of FLG 
and LOR expression (44). These improvements are as-
sociated with the downregulation of the TH2 (IL-13 and 
IL-31) signature (44). 

Given that the expression levels of FLG and LOR are 
associated with improvement in AD, strategies to block 
IL-4-mediated FLG (and LOR) downregulation may be 
beneficial in treating AD. Although the mechanisms to 
enhance FLG expression have not been fully understood, 
recent studies by us and other groups have revealed that 
aryl hydrocarbon receptor (AHR) signalling plays an 
essential role in upregulating the expression of FLG and 
other differentiation-related molecules (29, 30, 45–47). 
Notably, a plethora of antioxidative phytochemicals work 
as AHR agonists and restore the IL-4-mediated FLG 
downregulation (41, 42, 48, 49). These findings have 
unveiled the underlying mechanisms of how traditionally 
used antioxidant herbs and phytochemicals work well in 
maintaining healthy skin and in preventing atopic dry 
skin. This article focuses on the regulatory mechanisms 
of AHR/FLG signalling by exogenous antioxidative phy-
tochemicals operating in host epidermal keratinocytes. 

REGULATORY ROLE OF ARYL HYDROCARBON 
RECEPTOR IN OXIDATIVE STRESS

Skin cells, such as keratinocytes, harbour abundant AHR, 
which exerts multi-functional effects on skin homeostasis 
and pathology (50, 51). AHR was originally discovered 
as a cytosolic chemical sensor and transcription factor 
for halogenated and non-halogenated polycyclic aromatic 
hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) and benzo[α]pyrene (50–52). However, 
in addition to dioxins and benzo[α]pyrene, AHR is a pro-
miscuous receptor, binding with a wide range of affinities 
to structurally diverse low-molecular-weight chemicals 
including various phytochemicals (e.g. apigenin, querce-
tin and cynaropicrin) and tryptophan photoproducts after 
ultraviolet irradiation (50, 53–56). Most AHR ligands 
are very hydrophobic; these ligands enter target cells 
via diffusion and bind to cytosolic AHR. Upon ligand 
binding, cytosolic AHR undergoes nuclear translocation 
and binds to its specific DNA recognition site, namely, 
the xenobiotic-responsive element or dioxin-responsive 
element, and mediates numerous biological and toxico-
logical effects by inducing the transcription of various 
AHR-responsive genes, such as cytochrome P4501A1 
(CYP1A1) (50, 51, 53) (Fig. 1). In addition to its physio-
logical role in the detoxification of polycyclic aromatic 
compounds, the activity of the CYP1A1 enzyme can be 
deleterious, because it generates mutagenic metabolites 

and reactive oxygen species (ROS) in keratinocytes 
(50–53). Extensive studies on the function of Ahr using 
Ahr-deficient mice have demonstrated that Ahr is respon-
sible for most, if not all, of the toxic effects caused by 
TCDD (50, 51, 53). 

Ligands for AHR are divided into at least 2 groups, 
oxidative and antioxidative ligands (51). Oxidative li-
gands, such as TCDD and benzo[α]pyrene, induce robust 
ROS generation in keratinocytes via AHR activation 
(50, 52). Antioxidative phytochemical ligands, such as 
coal tar, soybean tar, cynaropicrin, Opuntia ficus-indica 
extract, Houttuynia cordata extract, Bidens pilosa extract 
and Galactomyces fermentation, filtrate activate AHR 
and upregulate CYP1A1 expression, but inhibit ROS 
generation via the activation of an antioxidant master 
transcription factor, nuclear factor-erythroid 2-related 
factor-2 (NRF2) (30, 41, 42, 49, 56–62) (Fig. 1). Oxida-
tive ligands also induce the compensatory activation of 
NRF2 (63), but the generation of ROS may overwhelm 
the NRF2-mediated antioxidant activity. Activation of 
NRF2 induces the transcription of antioxidant enzymes, 
such as NAD(P)H: quinone oxidoreductase 1 (NQO1) 

Fig. 1. Oxidative ligands for aryl hydrocarbon receptor (AHR), 
such as dioxins and benzo[α]pyrene, upregulate the expression 
of their metabolizing enzyme, cytochrome p450 1A1 (CYP1A1). 
The metabolizing process generates reactive oxygen species (ROS). The 
oxidative stress results in DNA damage and inflammation. Antioxidative 
phytochemical ligands, such as coal tar, soybean tar, Opuntia ficus-indica 
extract, Houttuynia cordata extract and cynaropicrin, bind to AHR and 
induce CYP1A1 upregulation. However, they are also good activators of 
antioxidant master transcription factors, namely, nuclear factor-erythroid 
2-related factor-2 (NRF2). The activation of NRF2 enhances the expression 
of NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 
(HMOX1) and inhibits generation of ROS.
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and heme oxygenase-1 (HMOX1), which are the key mo-
lecules in achieving antioxidant activity in keratinocytes 
(58, 59, 62, 64, 65). In line with this notion, ultraviolet B 
radiation-induced ROS production and sunburn reaction 
was inhibited via the NRF2/HMOX1 pathway (66, 67). 

The bidirectional regulation by AHR in oxidative/
antioxidant activity is very functional. For instance, 
benzo[α]pyrene induces AHR-mediated oxidative stress 
which  is efficiently inhibited by antioxidative phytoche-
micals via AHR-NRF2 activation (41, 49, 56, 57) (Fig. 
2). The antioxidative phytochemical ligands for AHR are 
also active in counteracting oxidative stress induced by 
tumour necrosis factor-α (41, 49, 56, 57).

Persistent overactivation of AHR by TCDD and other 
dioxin-related compounds induces prolonged oxidative 
stress and may cause chloracne (51, 68, 69). The gene-
ration of ROS is also involved in the pathogenesis of 
contact dermatitis, AD and psoriasis (70–72). Therefore, 
antioxidative AHR agonists may be beneficial for the 
treatment of oxidative inflammatory skin diseases. In 
this context, recent clinical trials have revealed that a 
natural antioxidative AHR agonist, tapinarof, improves 
skin lesions of AD and psoriasis in topical use (73–76). 

ARYL HYDROCARBON RECEPTOR SIGNALING 
ACTIVATES FILAGGRIN AND LORICRIN 
EXPRESSION IN KERATINOCYTES

Another intriguing aspect of AHR is its promoting capa-
city of epidermal terminal differentiation by upregulating 
FLG, LOR and other differentiation-related molecules 
(30, 41, 42, 49). These results coincide with the findings 
that nuclear translocation of AHR is observed in parallel 
with the terminal differentiation of keratinocytes, and that 
AHR antagonists have impaired terminal differentiation 
(77). In parallel, both Ahr-deficient and Ahr-transgenic 
mice reveal an abnormality in keratinization (78, 79). 

Both oxidative and antioxidative AHR ligands induce 
the coordinated upregulation of FLG, LOR, hornerin and 
other differentiation-related molecules (41, 42, 47, 49, 

77, 80) (Fig. 3). Sustained overactivation of AHR by 
oxidative TCDD induces exaggerated and accelerated 
terminal differentiation, which may cause chloracne and 
hyperkeratosis of the epidermis (47, 80). The oxidative 
AHR ligands, such as TCDD and benzo[α]pyrene, also 
induce the keratinocytes to produce proinflammatory 
cytokines (52, 56, 81). 

On the other hand, antioxidative AHR ligands reduce 
the production of proinflammatory cytokines from ke-
ratinocytes (30, 56, 77, 82) and restore the impaired 
epidermal barrier function in association with FLG 
upregulation (30, 77, 83, 84). In addition, TH2 cytokine-
mediated inhibition of FLG and LOR expression is res-

Fig. 3. Both oxidative and antioxidative ligands for AHR accelerate 
epidermal terminal differentiation by upregulating the expression 
of filaggrin (FLG) and other differentiation molecules via the AHR/
OVOL1 signalling pathway. Oxidative AHR ligands are hardly metabolized 
by CYP1A1 metabolizing enzyme and are retained in the body for a long time. 
The sustained acceleration of epidermal terminal differentiation may cause 
chloracne and other dioxin-related hazards. However, the acceleration of 
epidermal terminal differentiation mediated by antioxidative phytochemicals 
is beneficial for repairing barrier disruption.

Fig. 2. The production of reactive oxygen species (ROS) is weak in (A) control and (B) Opuntia ficus-indica extract-treated keratinocytes. (C) 
Benzo[α]pyrene induces robust production of ROS. (D) However, benzo[α]pyrene-induced ROS production is cancelled in the simultaneous presence of 
Opuntia ficus-indica extract. Scale bar=50 μm.
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cued via AHR activation by antioxidative phytochemicals 
(29, 30, 41, 42). 

ARYL HYDROCARBON RECEPTOR ACTIVATION 
RESCUES TH2-MEDIATED INHIBITION OF 
OVOL1-FLG AXIS

A previous study revealed that the FLG gene contains 
at least 2 xenobiotic-responsive elements where ligated 
AHR binds (47). Mutations in these sites abrogate AHR-
mediated FLG expression (47). In addition to this direct 
AHR-FLG regulation, we have recently demonstrated 
a crucial involvement of OVOL1 in the AHR-FLG 
pathway (29, 48) (Fig. 3). OVOL1 is a transcription 
factor profoundly related to epithelial differentiation 
(29, 85, 86) and is highlighted as one of the susceptible 
genes in AD (19, 22). Abrasion or overexpression of 
OVOL1 results in the downregulation or upregulation 
of FLG expression, respectively (29). The activation 
of AHR by soybean tar Glyteer induces cytoplasmic to 
nuclear translocation of OVOL1, and this OVOL1 ac-
tivation results in FLG upregulation (29). IL-4 inhibits 
FLG expression by blocking the cytoplasmic to nuclear 
translocation of OVOL1, and the IL-4-induced blockade 
of OVOL1 translocation is abrogated by AHR activa-
tion (29). Thus, AHR ligation rescues IL-4-mediated 
inhibition of the OVOL1-FLG axis (29). Importantly, 
the AHR-mediated LOR expression is also mediated 
by OVOL1 (48). These results stress the importance of 
AHR signalling in upregulating FLG expression directly 
or indirectly via OVOL1. Moreover, AHR signalling 
is effective in counteracting the IL-4-mediated barrier 
dysfunction in AD (30). 

CONCLUSION 

The topical application of some AHR agonists reduces 
inflammatory skin reactions and restores skin barrier 
function in mice and humans (76, 84, 87). The benefi-
cial effects of AHR ligation are related, at least in part, 
to its upregulation capacity of FLG, LOR and other 
differentiation-related genes in epidermal keratinocytes, 
as well as anti-inflammatory properties. In addition, some 
AHR agonists, including various phytochemicals, work 
as antioxidants via AHR-NRF2 activation. Considering 
that oxidative stress is exceeded in inflammatory skin 
conditions, antioxidative AHR agonists are particularly 
promising in drug development for AD in which TH2-
inflammation, barrier disruption and oxidative stress are 
intermingled. 
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