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Centenary theme section: ATOPIC DERMATITIS

SIGNIFICANCE
The aetiology of atopic dermatitis is poorly understood, but 
studies have provided insight into the pathomechanism, 
which may improve the prediction of onset of atopic der-
matitis and its prophylaxis. This review provides an over-
view of the pathogenesis and pathomechanism of atopic 
dermatitis.

Atopic dermatitis is a prevalent inflammatory skin con-
dition characterized by itch and dry skin, which affects 
15–20% of children and 3–5% of adults. This article 
reviews epidemiological, clinical and experimental 
data to provide an overview of the most important di-
sease mechanisms in atopic dermatitis. Genetic pre-
disposition, environmental insults, atopic triggers, 
complex host immune response and skin barrier chan-
ges, and altered skin microbiota are discussed. Whilst 
our understanding of atopic dermatitis has improved 
dramatically in recent years, many basic aspects are 
still not understood. Further research is needed to ful-
ly understand this complex skin disease. 

Key words: atopic dermatitis; aetiology; pathophysiology; pat-
homechanism; risk.

Accepted May 7, 2020; Epub ahead of print May 15, 2020

Acta Derm Venereol 2020; 100; adv00162.

Corr: Jacob P. Thyssen, Department of Dermatology and Allergy, Herlev 
and Gentofte Hospital, Hospitalsvej 15, DK-2900 Hellerup, Denmark. E-
mail: jacob.p.thyssen@regionh.dk

Atopic dermatitis (AD) is a prevalent inflammatory 
skin condition characterized by itch and dry skin, 

which affects 15–20% of children and 3–5% of adults. 
In large proportions of affected patients AD is chronic 
or remitting, as shown by epidemiological studies (1).

The pathogenesis of AD is complex and poorly under-
stood. However, in recent years, there has been major 
advancements in our understanding of the disease me-
chanism of AD, e.g. through the discovery of common 
filaggrin gene (FLG) mutations as a strong risk factor for 
AD, as well as the significant clinical effects of antago-
nistic therapy against interleukins (IL) 4, 13, 22 and 31. 

This review provides a holistic overview of the most 
important disease mechanisms in AD. 

INCIDENCE OF ATOPIC DERMATITIS PEAKS IN 
EARLY CHILDHOOD 

AD predominately begins in early childhood, as indicated 
by a recent prospective Danish study, which showed that 
nearly all cases of AD are diagnosed before the age of 
7 years (2). It is currently unclear to what degree “late-
onset AD” is important in absolute numbers, as studies 
have shown that patients who present with AD in adult-

hood may have forgotten about their childhood AD, and 
that the disease may therefore represent re-activation of 
previous disease. This notion is strongly emphasized by 
the finding that approximately 29% of Swedish adults 
aged 31–42 years with a school health record of AD in 
childhood did not recall this when asked as adults (3). In 
asthma, patients with adult onset seem to have different 
disease mechanisms, and it is possible that this may also 
be the case for AD. Moreover, the epidemiology of AD 
may change over time, in concert with new causative 
exposures. As an example, use of cosmetic products in 
adolescence has been associated with new onset of AD 
or recurrence of previous disease (4). Nonetheless, AD 
normally begins in early childhood; a time where the 
skin barrier is vulnerable to stress (5–7). This will lead 
to a decrease in the threshold level against common trig-
gers. As discussed in this review, the skin barrier defect 
is central to the risk of developing AD.

GENETIC PREDISPOSITION 

AD is a clinical syndrome, as indicated by the Hanifin 
& Rajka criteria for AD (8). These criteria dictate that 
a certain number of major and minor criteria need to be 
fulfilled in order to make a diagnosis of AD, including 
a list of phenotypic and heritable characteristics, such 
as xerosis, palmar hyperlinearity, keratosis pilaris (all 
associated with FLG mutations), infra-orbital folds or 
darkening, as well as facial pallor. Importantly, family 
predisposition to atopic disease is a major criterion of the 
Hanifin & Rajka criteria, and twin studies have shown 
that the heritability of AD is very high (9). The Hanifin 
& Rajka criteria were unintentionally developed for use 
in patients with predominately European ancestry, and 
it is clear that the phenotypic characteristics observed in 
other ethnic groups are under-represented, and that the 
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criteria may fail when used in these populations (10). 
An example is the recent observation that pigmentation 
on the lips is associated with AD in Asian subjects (11). 

FLG mutations lead to dry skin, characterized by 
elevated pH, increased colonization with staphylococci, 
enhanced penetration and reactivity to chemicals and al-
lergens, and therefore, expectedly, a strongly increased 
risk of AD (12). Nearly all carriers of FLG mutations with 
AD develop their skin disease within their first 2 years of 
life (13), whereas children with later onset do not have 
these mutations (14). The discovery of FLG mutations 
provided a new, and much needed, basis for the study of 
paediatric AD, and led to a strong re-emphasis on pri-
mary skin barrier impairment as a crucial factor for the 
development of AD. Since then, it has been shown that 
dry skin at birth and at 2 months of age, independent of 
FLG mutations, can predict AD at 12 months of age, and 
that daily application of emollients in high-risk infants 
may reduce the risk of AD (15). Importantly, the normal 
skin barrier in the 2 first years of infancy is very different 
from that of adult skin; for example, the levels of natural 
moisturizing factors (NMF), a degradation product of 
filaggrin, are much reduced (16). The tendency for AD 
to begin on the cheeks is also explained by a local, very 
pronounced, reduction in NMF, which may last until 3 
years of age (6). The down-regulation of filaggrin on 
exposed skin areas, as well as the increased prevalence 
of FLG mutations in populations that have migrated far 
from the Equator, is probably explained by evolutionary 
benefits due to increased synthesis of vitamin D fol-
lowing facilitated penetration of ultraviolet (UV) (17). 
Importantly, a deficiency of filaggrin, whether primary 
or secondary, results in increased penetration of allergens 
and risk of sensitization, which, in turn, may explain the 
increased risk of allergic asthma, rhinitis and food allergy 
in carriers of FLG mutations who have AD (18). 

ENVIRONMENTAL EXPOSURE

The crucial role of environmental exposure and skin 
stressors cannot be overemphasized when explaining 
the aetiology of the AD epidemic. Modern society has 
resulted in dramatic changes in human exposure, with 
increased use of, or exposure to, household products, 
cosmetics, tobacco, processed food, and air pollution, but 
at the same time reduced exposure to microorganisms 
and solar irradiation, as a result of increased hygiene, 
fewer people living together in the same household, 
and less time spent outside. Epigenetic changes due to 
environmental changes or insults could explain a large 
part of the endemic proportions of AD. In support of 
this theory, large genome-wide association studies have 
identified only a small proportion of genetic factors as-
sociated with AD (19). However, how the environmental 
changes have influenced the risk of AD at a mechanistic 
level is largely unknown. 

Being born in the autumn or winter in the Northern 
hemisphere, or being exposed to a dry and cold climate, 
has been strongly associated with AD (20, 21). This is 
probably explained by skin exposure to low temperatures, 
as well as low ambient humidity due to indoor heating, 
which can negatively affect the skin barrier and result in 
dermatitis (22). Similarly, bathing infants in hard water 
may increase the risk of AD, possibly due to increased 
pH, which, among other aspects, results in premature 
cleavage of cornedesmosomes (20). Exposure to air 
pollution and being born in a newly built home have 
also been associated with AD (23, 24), perhaps because 
chemicals negatively affect the epidermal barrier. For 
example, short-term exposure to airborne formaldehyde 
results in increased water loss from the skin surface 
(25) in patients with AD, and toluene, a common air 
pollutant, can directly down-regulate synthesis of filag-
grin (26). Interestingly, exposure to solar irradiation, 
which is normally avoided in infancy, to reduce the risk 
of skin malignancy, seems to protect against AD (27, 
28). This could be explained by the positive effects of 
sub-erythemogenic doses of UVB irradiation on the skin 
barrier, which, among other aspects, reduces Staphyloc-
cocus aureus colonization, itch, and T-cell invasion. 

EARLY ALTERATIONS IN THE IMMUNE SYSTEM 

The crucial role of early-age alterations in immune ac-
tivity on the development of AD is emphasized by the 
significantly reduced risk of AD in premature infants 
(29). Moreover, thymectomy in infancy reduces the risk 
of AD by 20%, suggesting that removal of the thymus 
decreases the number of circulating T cells that can act 
to develop AD (30). In indirect support of this assump-
tion, a study found significantly larger thymus sizes in 
children with AD compared with controls, although this 
may also be a consequence of the increased demand for T 
cells in patients with AD (31). The farm theory suggests 
that microbial exposure may reduce the risk of diseases 
mediated by T-helper (Th) cell 2, including AD (32), but 
it is probably more important for allergic diseases than 
for AD per se. The finding that neonate exposure to dogs 
can strongly reduce the risk of AD could be confounded, 
but it is also possible that changes in the host gut micro-
biome can affect the tolerance-reactivity balance (33). 
It is unclear how nutrients and alcohol use in mothers 
can affect the risk of AD, but is has been suggested that 
the Th2 skew induced by alcohol intake may lead to a 
higher prevalence of AD in infants (34). Similarly, nu-
trients may affect the child’s immune response, but this 
area is complex, and little evidence exists. Collectively, 
AD occurs mainly in genetically predisposed individuals 
who have significant skin barrier impairment and who 
are exposed to AD triggers (or who are overly protected 
against the crucial microorganisms that could prevent 
excessive Th2 skew in childhood) (Fig. 1). 
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VICIOUS CYCLE IN ATOPIC DERMATITIS 

AD is a skin condition in which primary (or secondary) 
skin barrier impairment leads to (further) skin inflamma-
tion, and in which S. aureus colonization may increase, 
and in turn may drive both eczema severity and the 
relentless sensation of itch (35). This leads to scratching 
and additional barrier impairment, thus creating a vicious 
cycle. Clinicians attempt to stop this cycle by restoring 
the skin barrier with emollients, reducing inflammation 
and itch with use of topical/oral immune suppressants 
or immune modulating drugs, as well light therapy, and, 
finally, decreasing the burden of S. aureus by use of disin-
fectants and antibiotics. Evidence supporting the benefits 
of emollient use to treat AD is the strongly increased time 
to subsequent flares in emollient users, and the reduced 
need for topical corticosteroids (36). However, barrier 
restoration without simultaneous control of inflamma-
tion seems to be inadequate in the treatment of AD (37). 
Prophylactic use of topical anti-inflammatory agents, e.g. 
with application twice weekly, works to reduce the risk 
of new flares (38). 

PATHOGENIC ROLE OF STAPHYLOCOCCUS 
AUREUS 

While the exact role of bacteria in the pathogenesis of 
AD is unclear, colonization with S. aureus is very com-

mon in lesional and non-lesional AD skin. Antimicrobial 
peptides, which work as broad-spectrum antibiotics to 
kill Gram-negative and Gram-positive bacteria, are redu-
ced in patients with AD, which, in turn, allows bacteria 
to colonize the skin (39). S. aureus can induce serine 
protease activity, which will destroy corneodesmosomes, 
and allow invasion (40). Moreover, the expression of Th2 
cytokines is activated by proteases released by S. aureus 
(41), and S. aureus toxin increases the allergic response 
by activating mast cells (42), and induces up-regulation 
of T cells via a superantigen-mediated mechanism (43). 
S. aureus also release α-toxins, which forms pores in 
keratinocyte membranes leading to cellular damage 
(44). Individuals with AD and FLG mutations have a 
7-fold higher risk of S. aureus skin infections, in part 
due to increased pH, but also due to the lack of the direct 
growth inhibition of the filaggrin proteins (45, 46). The 
levels of filaggrin degradation products, i.e. NMF, seem 
to regulate the strength of S. aureus corneocyte adhesion, 
the first step in skin colonization (47). 

SKIN MICROBIOME AND DISEASE CONTROL

While the skin hosts the most diverse commensal com-
munity of humans, with over 1,000 different bacterial 
species, the role of the skin microbiome in AD is poorly 
understood (48, 49). An animal study showed that 

Fig. 1. Theoretical outline of how genetic risk genes and environmental risk exposures interact and may impact the risk of atopic dermatitis 
(AD). If a child reaches the threshold bar for AD, the disease will manifest. Factors that increase the risk of AD are represented by yellow vertical lines, 
whereas factors that decrease the risk are represented by green vertical lines. Once AD has manifested, the lines are shown in red.



A
ct

aD
V

A
ct

aD
V

A
d
v
a
n

c
e
s 

in
 d

e
rm

a
to

lo
g
y
 a

n
d
 v

e
n

e
re

o
lo

g
y

A
c
ta

 D
e
rm

a
to

-V
e
n

e
re

o
lo

g
ic

a

J. P. Thyssen et al.344

Theme issue: Atopic dermatitis

filaggrin deficiency and microbial dysbiosis triggered 
intracellular IL-1α secretion and drove chronic inflam-
mation, hence indicating an important pathogenic role 
(50). Moreover, following successful treatment of AD, 
Streptococcus, Propionibacterium, and Corynebacte-
rium species increase in numbers along with microbial 
diversity (51). 

DYSFUNCTIONAL LESIONAL AND NON-
LESIONAL SKIN 

It is important to understand that non-lesional AD skin 
is also different from the skin of normal controls (Fig. 
2). It shows decreased or altered synthesis of important 
epidermal proteins, e.g. filaggrin, filaggrin 2, involucrin, 
loricrin, hornerin, and tight junctions, but also decreased 
synthesis of antimicrobial peptides and lipids, (52–58) as 
well as increased expression of high-affinity IgE receptor 
on dendritic CD1a, along with increased numbers of T 
cells and their cytokines. Children with AD and food al-
lergy have stratum corneum abnormalities in non-lesional 
skin that are not found in children with AD and controls 
without food allergy. Thus, filaggrin and ω-hydroxy fatty 
acid sphingosine are reduced, and there are important 
changes in the epidermal lamellar bilayer architecture 
(59). Thus, skin measurements in non-lesional AD skin 
show elevated pH, increased water loss from the skin 
surface, and increased penetration of chemicals (60). Mo-
reover, AD skin displays a reduced reactivity threshold to 
exogenous stressors, such as skin irritants, allergens and 
S. aureus, in part due to the creation of resident T-cell 
populations (61–63). The changes in non-lesional skin 
are largely determined by disease extent and severity 
(53), probably reinforcing the impression of AD as a 
generalized skin disease. 

HETEROGENEOUS INFLAMMATORY RESPONSE, 
DEFICIENT SKIN BARRIER AND EXOGENOUS 
STRESSORS 

Type 2 immunity-associated cytokines, such as IL-4 
and IL-13, as well as other cytokines, including, but not 
limited to, IL-1, IL-17, IL-22, IL-31 IL-33, and thymic 
stromal lymphopoietin (TSLP) have important roles 
in AD. It is presently unclear whether significant dif-
ferences exist between AD skin of children and adults, 
as well as between different ethnic groups, and to what 
degree this should affect treatment strategy (64, 65). 
While certain endotypes of AD are suspected to exist, the 
heterogeneous cytokine landscape could also, in part, be 
explained by the crucial pathogenic role of the sustained 
skin barrier impairment in lesional and non-lesional AD 
skin. Thus, the continuous bombardment and penetration 
of microorganisms, chemicals, irritants and allergens 
into the primary and sustained skin barrier impairment 
in AD could lead to secretion of various cytokines, and 
as discussed below, activate the Th1 and Th17 axis in 
addition to the Th2 axis. The exact immune response 
would be expected to depend on genetics, age, sites of 
skin exposure, possible co-infection, climatic effects, 
and type of elicitor. Interestingly, use of monoclonal 
antibodies against the IL-4 and IL-13 receptors seems 
to be slightly less effective in facial skin; an anatomical 
area which is exposed to environmental pollutants and 
climatic factors (66). 

ATOPIC TRIGGERS 

To date, there has been little research into the reactivity to 
various stressors. A survey in children with AD showed 
that sweating from exercise was a common exacerbator 

Fig. 2. Important skin barrier changes in atopic dermatitis (AD). Innate and acquired inflammation in AD leads to downregulation and degradation 
of filaggrin and tight junction proteins, in turn leading to a dry and leaky skin barrier with elevated pH, which allows bacteria to colonize and allergens, 
irritants and microorganisms to invade. Tight junction reduction further allows antigen presenting cells to move upwards and meet the antigens. Lipid 
synthesis is compromised at several levels, which acts in concert with protein dysfunction to allow increased loss of water from the skin surface. In an 
attempt to restore the skin barrier and prevent excessive water loss, acanthosis occurs, often in conjunction with mild spongiosis.
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of AD (67). While the exact mechanisms is unknown 
(68) and, at least in part, could be explained by the direct 
effects of heating (69), leaking of sweat into the epider-
mis due to dysfunctional tight junction function could 
be relevant (70), as well as obstruction of sweat ducts 
due to filaggrin deficiency (71). Other well-established 
triggers for AD include exposure to wool, hot weather, 
psychological stress and sleep deprivation. Induction of 
stress leads to scratching behaviour in patients with AD, 
but not in controls (72). The dysfunctional and partly 
unresponsive peripheral hypothalamic-pituitary-adrenal 
axis in AD skin could also be important (73). Moreover, 
psychological stress reduces the recovery time of the 
stratum corneum, decreases lipid synthesis, and increases 
the risk of skin infections (74). Exposure to grass al-
lergens may cause worsening of AD in grass-allergic 
AD individuals through IL-4 release (75). Contact aller-
gens, e.g. fragrances and certain rubber chemicals, have 
been shown to elicit Th2 immune activity in patch test 
reactions, as opposed to many other allergens that elicit 
Th1 immune response (76, 77). Furthermore, exposure 
to experimental and environmental contact allergens in 
patients with AD causes Th2 immune response activity, 
but Th1 immune response in non-atopic skin (78). How 
this translates into clinical relevance is currently unclear. 
A recent study examined the skin immune response to 
various atopic triggers in individuals with normal skin 
and found that exposure to hard water is associated with 
IL-4 secretion in the epidermis (79). 

CYTOKINE ANTAGONISM AND THE IMMUNE 
RESPONSE 

The most important knowledge about the immune re-
sponse in AD has been derived from clinical trials using 
antagonists against specific cytokines. To date, mainly 
IL-4, but also IL-13, antagonisms have proven to reduce 
the severity of AD, whereas IL-22 inhibition mostly 
worked in patients with severe AD (80). While IL-31 
inhibition significantly reduced itch in patients with AD, 
the effects on AD have not been appropriately examined 
(81). Clinical studies into the development of antibodies 
against TSLP, IL-33 and IL-17C are ongoing. These 
published data clearly indicate the relative importance 
of the above-mentioned cytokines, but other chemokines 
and cytokines will be targeted in the future. 

COMPLEX IMMUNE RESPONSE 

It is beyond the scope of this review to describe the im-
munopathophysiology of AD in detail. Briefly, predomi-
nately Th2 (IL-4, IL-5, IL-13, IL-31) and Th22 (IL-22) 
deviation is observed in acute and chronic AD lesions, 
which, in turn, down-regulate expression of important 
skin barrier proteins, such as filaggrin. Innate lymphoid 
cells also release Th2 cytokines, now increasingly re-

ferred to as type 2 immunity. In chronic AD lesions, a 
parallel activation of the Th1 axis is observed, and in 
both acute and chronic AD, IL-17 activation can be found 
(82). Yet, even in healthy skin from patients with AD, 
there is increased expression of inflammatory cytokines 
and chemokines, as well as of their receptors, and an 
increased number of lymphocytes compared with healthy 
controls, suggesting increased immuno-surveillance in 
the skin and risk of acute inflammation (53). 

Apart from the negative influence on the skin barrier, 
Th2 inflammation inhibits antimicrobial peptide synthe-
sis and increases S. aureus colonization. The Th2 cells 
may, in many patients, lead to antibody isotype switching 
to IgE and recruit mast cells, eosinophils, basophils and 
dendritic cells. Elevated levels of IgE correlate with AD 
and atopic co-morbidities, including asthma and food al-
lergies (83). Previously, this has been used to subtype AD 
into extrinsic AD, where allergic sensitization has taken 
place, and intrinsic AD, in which patients have normal 
levels of IgE. However, patients with normal IgE levels 
may also be sensitized and vice versa. It has even been 
suggested to use the terms intrinsic factors to describe 
inborn factors e.g. FLG mutations, Th2 skewing, etc., 
which affect the skin barrier function or the immune 
response in terms of AD and extrinsic factors to describe 
exogenous factors, e.g. S. aureus, detergents, allergens, 
etc. (82). Interestingly, IgE may target keratinocytes in up 
to 25% of patients with AD, indicating that IgE may play 
an important role in impairment of the skin barrier (84). 

Regulatory T cells can suppress the Th2 response, and 
the balance between these 2 cell types is central to deve-
lopment of tolerance. It is not known whether a primary 
immune-deficiency/imbalance might be the prime cause 
of AD. Single nucleotide polymorphisms (SNPs) in, for 
example, ST2 (a member of the interleukin 1 family), 
IL-13, IL-12, have been reported to be associated with 
AD, and a huge work in developing a taxonomy for AD 
subtypes based on serum levels of cytokines has been 
undertaken (85). A recent work was able to distinguish 
at least 3 different subtypes of AD, based on analysis of 
147 different soluble factors, yet this does not, in itself, 
show that the immune response is the prime cause of the 
disease (86). Rather, it indicates that patients with AD 
have different propensity to react to exogenous stimuli 
and that, even within the group of patients with AD, this 
differs slightly and gives rise to different subtypes. The 
result of this may be the development of personalized 
medicine for patients with AD (87).

ROLE OF SYSTEMIC INFLAMMATION 

Adult patients with AD have significantly elevated levels 
of circulating cytokines and chemokines (87). While it 
is intriguing to consider that the systemic inflammation 
in AD can negatively affect the function of other organs, 
such as the central nervous system and vascular system, 
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there is currently no convincing evidence to support 
this. Nonetheless, AD has been associated with anxiety, 
depression, autism and attention deficit disorders, and it 
is possible that cytokines may cause a leaky blood–brain 
barrier and become absorbed into the cerebrospinal 
compartments and negatively affect cognitive deve-
lopment, by affecting the glia cells and neurogenesis. 
Decreased sleep quality due to itch is, however, also a 
major risk factor for ADD and depressive symptoms. The 
link between asthma and AD is not fully understood, but 
the shared type 2 immunity and effect of dupilumab on 
severity of both AD and asthma support that systemic 
inflammation could play an important role. While some 
patients with AD experience worsening of their AD 
during or after asthma attacks, it is unclear whether this 
is explained by psychological stress or by cytokines 
reaching the skin. 

CONCLUSION

This review highlights some important disease me-
chanisms of AD. While understanding of AD has im-
proved in recent years, many basic aspects are still not 
understood. For example, why do AD lesions outside 
the flexural areas tend to clear once flexural eczema is 
controlled? Why is AD a flexural disease? What trig-
gers an AD flare? What explains the resolution of AD 
in the majority of children? What is the role of foods as 
triggers for AD? Why do AD children have fewer naevi 
than controls? These are just some of many unanswered 
questions. In conclusion, more research is needed into 
this complex skin disease. 
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