score. For subjects unable to get into a sitting position unassisted, the SMES comes to a stop when the items performed in the lying position have been carried out (26). Exclusion of such discrepant cases from the material made the predictive accuracy of the two instruments approximately equal, indicating that the higher predictive power of SMES is, in part, attributable to the fact that this instrument evaluates unassisted movements only.

In conclusion, we find that the SMES, scored in the acute phase of stroke, demonstrates a strong ability to predict return home, independence in primary and instrumental ADL, and social function after one year.

ACKNOWLEDGMENTS
The work was supported by grants from the Norwegian National Health Organization, the Royal Norwegian Ministry of Health and Social Affairs, the Norwegian Fund for Post-Graduate Training in Physiotherapy, and the Norwegian Occupational Therapy Association. We thank Professor Karl Luske for his helpful involvement throughout the study.

REFERENCES

Accepted May 28, 1996

Address for correspondence:
Torgor Brun Wylle, MD
Department of Geriatric Medicine
Ullevaal Hospital, N-0407 Oslo, Norway

AUDITORY FEEDBACK REGULATION OF PERTURBED STANCE IN STROKE PATIENTS

H. Petersen, MD,1 M. Magnusson, MD, PhD,2 R. Johansson, MD, PhD2 and P.-A. Franson, MSc2

From the 1Department of Orkotraumatology, Central Hospital, Askery, Iceland and 2University Hospital, Lund, Sweden

ABSTRACT: The effect of auditory input on impaired postural control perturbations was evaluated in two groups of stroke patients participating in a rehabilitation programme after a recent (<12 months) and single episode of stroke, or less recent (>12 months), and multiple episodes of stroke. Auditory input took the form of feedback signals generated by the forces actuated by the feet on a force platform in response to the patient’s postural movements. Vibratory stimuli applied to the calf muscles induced sudden perturbations which the patients had to counteract to maintain an upright stance. The effect of auditory feedback in facilitating the maintenance of stance was measured in terms of sagittal torque variance (body sway) recorded on a force platform. In the presence of auditory feedback, body torque variance in response to perturbed posture was significantly reduced in the recent stroke group, whereas in the less recent stroke group the auditory feedback did not prove effective. Moreover, learning seems essential to utilize the auditory feedback. Key words: audio, feedback, human, posture, stroke, vestibular.

INTRODUCTION

Stroke is the third leading cause of death and an important cause of long-term disability in the elderly. One-third of stroke patients survive the acute event but are left with considerable residual disability (22). Although stroke may present with any combination of motor, sensory and cognitive deficits, motor dysfunction is the single most common type of impairment (1). Rehabilitation of gait and stance is one of the major goals in the aftercare of stroke patients, and a variety of treatment programmes have been devised for this purpose (24).

Ability to maintain an upright stance and to stabilize the body is a prerequisite for motor performances in the activities of daily living (ADL) (7). It is based on complex feedback and feedforward control, as well as on the integrity of several networks in the central nervous system (CNS) acting in response toafferent visual, vestibular and somatosensory information (26). Together with hearing (19), the various sources of sensory information provide a basis for orientation in space.

Biofeedback is already widely used in physiotherapy and rehabilitation (2, 12). The feedback loop is usually based on body movements, and may be further amplified by auditory or visual information to augment such different motor performances as symmetrical stance (10, 25) or gait (6, 18) in hemiparetic stroke patients. Afferent sensory stimulation with acupuncture needles in hemiparetic patients has also proved useful (17). We recently reported that auditory feedback input may stabilize perturbed stance in healthy subjects (20), and hence, that auditory feedback could be used to supplement afferent information and thus improve impaired postural control.

It is not known whether patients with impaired postural control after stroke can use auditory feedback as an external source of information to augment not only quiet stance but also perturbed stance. Coping with perturbations in stance may be compared to the everyday task of maintaining upright posture in response to sudden and unanticipated disturbances to posture and gait. The aim of this study was to investigate whether patients could benefit from auditory input to enhance motor control of posture during repeated perturbations of stance, thus indicating a possible use of auditory biofeedback training in rehabilitation.

MATERIALS AND METHODS

Patients
We investigated 15 patients (3 women and 12 men; median age 66 years, range 31–41) with previous stroke and persisting stroke.
impairment of motor function of stance and gait. All patients were currently in or had previously participated in a similar rehabilitation programme, at Gotorp in Sweden. Inclusion criteria were any previous stroke, a diagnosis verified with computerized tomography (CT) and/or magnetic resonance imaging (MRI). Based on the duration and recurrence of the illness (stroke), the patients were divided into two groups: Group I, with a recent (<12 months) single episode of stroke; Group II, with less recent (≥12 months) as well as bilateral and/or multiple episodes of stroke. Baseline characteristics, clinical symptoms, arterial territory involved, and CT or MRI findings are given in Table 1.

Methods

Other than the presence of clinically diagnosed stroke, the only inclusion criteria were that the patient should be able to stand erect with the eyes open for about 5 min and be able to understand and follow verbal instructions. One patient was excluded because of impaired vision (confirmed at ophthal- mic examination). Eye, nose and throat examination as well as pure tone audiometry were performed prior to the experiment. A pure tone average (0.5, 1, 2, 4 kHz) was calculated, median 11.5 dB (range –2 to 40 dB) for the left ear.

The auditory feedback took the form of a sound signal derived from sagittal body movements, and its stabilizing effect on perturbed body posture was investigated. Body sway in the sagittal plane was recorded with a force platform. The changes in the centre point of force (CPF) actuated by the forces on the platform being digitized and sampled at 10 Hz by computer (COMPAG 485/25). The auditory feedback signal was derived from the force platform signal as follows. After computer recording, the platform signal was transformed by a voltage-controlled signal generator (Wave- tec, model 164) to a stimulus tone the frequency of which changed in response to the movement of the body in the sagittal plane, i.e., increasing in pitch when the patient leaned forward and decreasing in pitch when the patient leaned backward. The baseline tone of 1500 Hz representing upright stance was thus increased and decreased by 56 Hz/N in concert with body movements, and relayed to the patient as a feedback signal through earphones (Fig. 1).

The intensity of the auditory feedback signal was 81 dB SPL (sound pressure level) when measured at ear level (Brüel and Kjær, Sound Level Meter, 2218). In control tests with no auditory feedback, the patients' earphones relayed music (Haffner renderer by Monor) instead, to obscure possible orientation cues from environmental noise. All tests were performed in a normally reverberating and illuminated room.

Vibratory stimulus pseudo-randomly applied with vibra- tors attached on the belt of the right and left leg. Right and left leg vibrometer was used to effect perturbations of the patient's posture by disturbing proprioception, i.e., vibration-induced body sway (8, 9). Low intensity (120 mW, amplitude 0.4 mm, frequency 60 Hz) vibrators were used to elicit perturbations. The design and calculation of this vestibular stimulus system has been described in detail elsewhere (20).

The patients were instructed to stand erect but relaxed on the force platform, heels together not touching and feet at a right angle of 30 degrees, arms crossed over the chest, with the eyes open and focused a mark on the wall at a distance of 1.5 m. The experiment consisted of four test sequences scheduled according to a Latin square design. In tests A

and B patients were provided with music, but in tests C and D they were provided with auditory feedback either without (A and C) or with (B and D) vestibular stimulus. Each test was divided into two periods, period 1 (0–64) and period 2 (64–148 s), in order to check for any learning effects. The patients were informed in advance about the different test routines and they were allowed to become adept with the stimulus and precise for about 2 min before the test commenced.

Results

Torque variance representing the body sway in the sagittal plane was calculated and evaluated with the Matlab 4.2 program (Mathworks Inc, USA). As an uncalculated values for torque variance within each test trended to be skewed, according to the Shapiro-Wilk test, a non-parametric test, the Wilcoxon/Kruskal-Wallis rank sum test was used to evaluate the difference p-values <0.05 being considered statistically significant. All statistical computation was performed with a statistical software package (JMP 2.0; SAS Institute Inc. USA).

Scand J Rehabil Med 28

Auditory feedback and postural control in stroke 219

Auditory Feedback

Amplifier

Notch Filter

Fig. 1. Diagram of experimental set-up and feedback sound signal generation from body sway.

DISCUSSION

Auditory feedback of sagittal movements of the centre point of force reduced torque variance (body sway) during perturbations of posture in patients with a recent (<12 months) isolated episode of stroke (group I). Patients with less recent (>12 months) and/or multiple stroke episodes (group II) did not benefit from the auditory feedback input. In patients with recent stroke the beneficial effect became significant in the second test period (64–148 s), a finding which emphasizes the importance of learning and training in postural rehabilitation (11, 24). This

Scand J Rehabil Med 28
impaired. Of those with clinical diagnosis of stroke, the first inclusion criteria was that the patient should report the eyes open for about 3.5 min and be able to understand and follow verbal instructions. One patient was excluded because of impaired vision (confirmed at ophthalmic examination). Ear, nose, and throat examination as well as pure tone audiometry were performed prior to the experiment. A pure tone average (0.5 kHz, 1 kHz, 2 kHz) was calculated, medium 1.5 dB (range −1 to 40 dB) for the left ear.

The auditory feedback took the form of a sound signal derived from sagittal body movements, and its stabilizing effect on perturbed body posture was investigated. Body sway in the sagittal plane was recorded with a force platform. The changes in the center of force (CoF) actuated by the foot on the platform being digitized and sampled at 10 Hz by computer (COMPAQ 486/25). The auditory feedback sound signal was derived from the force platform signal as follows: After computer recording, the platform signal was transformed by a voltage-controlled signal generator (Wavetek, model 164) into a triangular tone (the frequency of which changed in response to the movement of the body in the sagittal plane) i.e., increasing in pitch when the patient leaned forward and decreasing in pitch when the patient leaned backward. The baseline level of 1000 Hz representing upright stance was thus increased and decreased by 56 Hz/56 Hz in concert with body movements, and relayed to the patient as a feedback signal through earphones (Fig. 1). The intensity of the auditory feedback signal was 81.4 dB SPL (sound pressure level) when measured at ear level (Briel & Kjaer, Sound Level Meter, 2216). In control tests with no auditory feedback, the patients' earphones were tilted (Haffner screened by Moorer) instead, to obscure possible orientation cues from environmental noise. All tests were performed in a normally reverberant and illuminated room.

Vibratory stimulus pseudo-randomly applied with vibrotactile stimulation, was used to elicit perturbations of the patient's posture by disturbing proprioception, i.e., vibrations applied in the area of foot, about 1 s, low intensity (120 mW/cm²), 0.45 mm, frequency 60 Hz). Vibrotactile stimulation was used to elicit perturbations of this type. The design and calibration of this vibrotactile stimulus system has been described in detail elsewhere (22).

The patients were instructed to stand on one foot and return on the force platform, heel to toe with no touching and feet at an angle of about 30 degrees, arms crossed over the chest, with the eyes open and focused on a mark on the wall at a distance of 1.5 m. The experiment consisted of four test sequences scheduled according to a Latin square design. In tests A

and B patients were provided with music, but in tests C and D they were provided with auditory feedback either without (A and C) or with (B and D) vibrotactile stimulus. Each test was divided into two periods, period 1 (0–64 s) and period 2 (64–144 s), in order to check for any learning effects. The patients were informed in advance about the different test routines and they were allowed to become adept with the stimulus and practice for about 2 min before the test commence.

Statistical analysis

The tone of voice representing the body sway in the sagittal plane was calculated and evaluated with the MATLAB 4.2 program (Mathworks Inc., USA). As calculated values for tone of voice within each test tended to be skewed, according to the Shapiro-Wilk test, a non-parametric test, the Wilcoxon/Kruskal-Wallis rank sum test was used to evaluate the difference p-values <0.05 being considered statistically significant. All statistical computation was performed with a statistical software package (JMP 2.0, SAS Institute Inc., USA).

RESULTS

The patients stood on the force platform with their eyes open in all tests. The results for all patients are given in Fig. 2. Sagittal tone of voice (body sway) increased significantly during vibratory stimulation when the patients' earphones relayed music, but when they relayed vibratory feedback the auditory vibrotactile stimulation did not cause a significant increase of the tone of voice (Fig. 2).

In patients with recent stroke (group I), auditory feedback (test D) significantly reduced the sagittal tone of voice (body sway) in the second half of the experiment (period 2), as compared to test B when the earphones relayed music, whereas in the first half of the experiment (period 1) the tone of voice was not significantly reduced (Fig. 3).

In patients with less recent stroke (group II) the availability of auditory feedback (test D) did not alter the tone of voice, as compared to test B (Fig. 4).

DISCUSSION

Auditory feedback of sagittal movements of the centre point of force reduced tone of voice (body sway) during perturbations of posture in patients with a recent (<12 months) isolated episode of stroke (group I). Patients with less recent (>12 months) and/or multiple stroke episodes (group II) did not benefit from the auditory feedback input. In patients with recent stroke the beneficial effect became significant in the second test period (64–144 s), a finding which emphasizes the importance of learning and training in postural rehabilitation (11, 24). This...
The breaking point between the test periods (64-6) corresponds to that of the so-called postural adaptation time constant recently described (15).

In all patients, postural impairment was a prominent sequel of hemiplegic stroke. In no patient was vertigo the main initial symptom, as is often the case in stroke involving the vertebrobasilar territory (23) and also reported in cases of stroke involving the middle cerebral artery territory (3). No patient had any manifest neuropathy, although one patient in group II (less recent stroke) had a history of diabetes mellitus type I.

Vibration applied to the calf muscles activates proprioceptive receptors (muscle spindles) and induces body sway (8). Vibration-induced body sway has been found useful in several studies of postural control, both in healthy subjects (16), and in patients with peripheral or central vestibular lesions (21).

Vibration of sufficient intensity can cause manifest disturbance of posture, and may induce falls even in normal subjects (9). The vibration-induced body sway reaction seems to be stable from about 15 years to at least 75 years of age (13). In the present study, the patients were of late middle age (median 64 years).

In the present experiment, a low-intensity vibration (120 mW) was used, known to cause less pronounced body movements (20), resulting in slower frequency changes of the auditory feedback input. The auditory feedback input reflects the changes in forces actuated by the feet on the platform during body movements, but does not directly reflect head movements. This may explain why auditory feedback was more effective in reducing slower body perturbations, whereas the use of the so-called ankle strategy may be expected (14), and hence the feedback pattern would be simpler than it would be in a dynamic multicomponent response. These slow vibration-induced body movements and the auditory feedback input generated from them, acting upon a patient with postural deficit, are augmented to effectively enhance postural stability in a circuit manner.

All tests were performed with the patient's eyes open as stabilizing effects of the availability of visual information is of great help in healthy elderly subjects (3), and because stroke patients perform most of their rehabilitation training with the eyes open (4).

Although an even more pronounced stabilizing effect of the auditory feedback would have been expected under visually deprived conditions, as the present findings suggest auditory feedback provides useful information supplementing visual input; that is, the availability of auditory feedback would have had little or no effect had it not provided information beyond that derived visually from the surroundings.

Patient number four reported that "I was afraid to use the changing sound [auditory feedback] in the beginning but when I became familiar with it, it helped" (see Fig; 2; patient 4; period 1 and 2). After the experiments, all patients rated the effect of the auditory feedback on a visual analogue scale (VAS), ranging from 0 (no help) to 10 (excellent help). The VAS ratings were significantly higher in group I (recent stroke) than in group II (less recent stroke) (p < 0.05; Wilcoxon/Kruskal-Wallis test). Although the values for postural variables obtained in test sequences where music was relayed by the earphones instead of auditory feedback suggest this form of auditory input to have had a certain placebo effect, no VAS ratings were made for these tests as the primary aim was to investigate the possibility of using auditory feedback in a rehabilitation context as an aid in counteracting sudden perturbations of posture, and not to compare subjective assessment of different treatments.

The present findings suggest that the stabilizing effect of auditory feedback may contribute to minimizing response to sudden perturbations, and that as this effect becomes gradually apparent it may represent a learning effect. As sudden perturbations need to be cope with in everyday life, auditory feedback

Fig. 2. Mean values and SEM for sagittal torque variance (body sway) in group I (recent < 1 year) and group II (less recent stroke) (p < 0.05; Wilcoxon/Kruskal-Wallis test). Although the values for postural variables obtained in test sequences where music was relayed by the earphones instead of auditory feedback suggest this form of auditory input to have had a certain placebo effect, no VAS ratings were made for these tests as the primary aim was to investigate the possibility of using auditory feedback in a rehabilitation context as an aid in counteracting sudden perturbations of posture, and not to compare subjective assessment of different treatments.
The breaking point between the test periods (64-6) corresponds to that of the so-called postural adaptation time constant recently described (15).

In all patients, postural impairment was a prominent sequel of hemispheric stroke. In no patient was vertigo the main initial symptom, as is often the case in stroke involving the verteobasilar territory (23) and also reported in cases of stroke involving the middle cerebral artery territory (5). No patient had any manifest neuropathy, although one patient in group II (less recent stroke) had a history of diabetes mellitus type I.

Vibration applied to the calf muscles activates proprioceptive receptors (muscle spindles) and induces body sway (8). Vibration-induced body sway has been found useful in several studies of postural control, both in healthy subjects (16), and in patients with peripheral or central vestibular lesions (21). Vibration of sufficient intensity can cause manifest disturbance of posture, and may induce falls even in normal subjects (9). The vibration-induced body sway reaction seems to be stable from about 15 years to at least 75 years of age (13). In the present study, the patients were of late middle age (median 64 years).

In the present experiment, a low intensity vibration (120 mW) was used, known to cause less pronounced body movements (20), resulting in slower frequency changes of the auditory feedback input. The auditory feedback input reflects the changes in forces actuated by the feet on the platform during body movements, but does not directly reflect head movements. This may explain why auditory feedback was more effective in reducing slower body perturbations, whereas the use of the so-called ankle strategy may be expected (14), and hence the feedback pattern would be simpler than it would be in a dynamic multiglominal response. These slow vibration-induced body movements and the auditory feedback input generated from them, acting upon a patient with postural deficit, are augmented to effectively enhance postural stability in a circuit manner.

Fig. 2. Mean values and SEM for sagittal torque variance (body sway) in group I (recent stroke) and group II (less recent stroke) are given for periods 1 and 2. Changes in sagittal torque variance are also given for each patient NS = not significant.

All tests were performed with the patient's eyes open as stabilizing effect of the availability of visual information is of great help in healthy elderly subjects (3), and because stroke patients perform most of their rehabilitation training with closed eyes (4). Although an even more pronounced stabilizing effect of the auditory feedback would have been expected under visually deprived conditions, as the present findings suggest auditory feedback provides useful information supplementing visual input; that is, the availability of auditory feedback would have had little or no effect had it not provided information beyond that derived visually from the surroundings.

Patient number four reported that "I was afraid to use the changing sound [auditory feedback] in the beginning but when I became familiar with it, it helped" (see Fig. 2; patient 4; period 1 and 2). After the experiments, all patients rated the effect of the auditory feedback a visual analogue scale (VAS), ranging from 0 (no help) to 5 (excellent help). VAS ratings were significantly higher in group I (recent stroke) than in group II (less recent stroke) (p < 0.05, Wilcoxon/Kruskal-Wallis test). Although the values for postural variables obtained in test sequences where music was relayed by the earphones instead of auditory feedback suggest this form of auditory input to have had a certain placebo effect, no VAS ratings were made for these tests as the primary aim was to investigate the possibility of using auditory feedback in a rehabilitation context as an aid in counteracting sudden perturbations of posture, and not to compare subjective assessment of different treatments.

The present findings suggest that the stabilizing effect of auditory feedback may contribute to minimizing responses to sudden perturbations, and that as this effect becomes gradually apparent it may represent a learning effect. As sudden perturbations need to be coped with in everyday life, auditory feedback
might prove useful in rehabilitation training programmes aimed at augmenting postural skills. The finding that the effect of auditory feedback was more marked in group I (repetitive stroke) suggests that feedback be better suited for use in the early phase of stroke rehabilitation programmes, or as an additional procedure supplementing other methods in studies of postural control. Early stroke patients and healthy subjects standing with eyes closed (20) appear to be better able to utilize auditory feedback as a means of enhancing perturbed postural control. In the present test set-up the auditory feedback reflects the changes in force required for body postural movements, information supplementary to the one of the vestibular receptors signalling the angular velocity of the same postural movements. Initially through cognition and later with sufficient training in synchronizing vestibular and audible information, a modulation of the amplitude of the postural response may be achieved; an ability mediated by remaining cortical structures and/or subcortically (27). Already being involved in rehabilitation using postural training mainly based on visual and proprioceptive augmentation, patients suffering from remote stroke have already reached their very best in postural performance standing with eyes open, not further enhanced with auditory feedback. Whether auditory feedback may be used to enhance upright stance with eyes closed in this group of remote stroke patients is a matter for further investigations. Finally, it should be borne in mind that the present study group comprised 14 unselected patients with CNS (stroke) lesions varying in site and magnitude, and that ability to benefit from auditory feedback may vary according to the site and magnitude of the lesion. However, the present unselected study group in naturally move representative of the clientele at most rehabilitation centers. The present finding that this heterogeneous group of stroke patients manifest a significant effect of the auditory feedback procedure suggests that it might prove useful in postural control training in coping with the kind of sudden perturbations encountered in everyday life.

ACKNOWLEDGEMENTS
We thank Bo Norring, MD for reviewing the manuscript, and Bengt Turesson, MD and Kristina Brogård, BS, PT for their excellent help in recruiting the patients.

REFERENCES
Fig. 4. Mean values and SEM for sagittal torque variance (body sway) in group II (older > 1 year) as well as bilateral and more frequent episodes of CVJ. The difference between music/stimuli (test B) and feedback/stimuli (test D) is given for periods 1 and 2. Changes in sagittal torque variance are also given for each patient. NS = not significant.

might prove useful in rehabilitation training programs aimed at augmenting postural skills.

The finding that the effect of auditory feedback was more marked in group I (young stroke) suggests that feedback is better suited for use in the early phase of stroke rehabilitation programs, or as an additional procedure supplementing other methods in studies of postural control. Early stroke patients and healthy subjects standing with eyes closed (20) appear to be better able to utilize auditory feedback as a means of enhancing perturbed postural control. In the present test set-up the auditory feedback reflects the changes in force required for body postural movements, information supplementary to the one of the vestibular receptors signalling the angular velocity of the same postural movements. Initially through cognition and later with sufficient training in synchronizing vestibular and audible information, a modulation of the amplitude of the postural response may be achieved; an ability mediated by remaining cortical structures and/or subcortically (27). Already being involved in rehabilitation using postural training mainly based on visual and proprioceptive augmentation, patients suffering from remote stroke have already reached their very best in postural performance standing with eyes open, not further enhanced with auditory feedback.

Whether auditory feedback may be used to enhance upright stance with eyes closed in this group of remote stroke patients is a matter for further investigations.

Finally, it should be borne in mind that the present study group comprised 14 unselected patients with CNS (stroke) lesions varying in site and magnitude, and that ability to benefit from auditory feedback may vary according to the site and magnitude of the lesion. However, the present unselected study group

is naturally more representative of the clientele at most rehabilitation centers. The present finding that this heterogeneous group of stroke patients manifest a significant effect of the auditory feedback procedure suggests that it might prove useful in postural control training in coping with the kind of sudden perturbations encountered in everyday life.

ACKNOWLEDGEMENTS

We thank Bo Norring, MD for reviewing the manuscript, and Bengt Taurov, MD and Kristina Brogard, BSc, PT for their excellent help in recruiting the patients.

REFERENCES

Accepted January 22, 1996

Address for offprints: H. Petersen, MD
Akureyri Central Hospital
PO Box 560
IS 602 Akureyri
Iceland
Tel: +354 463 0100
Fax: +354 462 4621