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One aim of rehabilitation after brain lesions should be to

optimise the function of the remaining intact brain. Ex-

perimental studies on focal cerebral infarcts in the rat have

demonstrated that postischemic environmental enrichment

significantly improves functional outcome, increases den-

drite branching and number of dendritic spines in the con-

tralateral cortex, influences expression of many genes and

modifies lesion-induced stem cell differentiation in the hip-

pocampus. Furthermore, environmental factors can inter-

act with specific interventions such as necrotic grafting

and drug treatment, which underlines the importance of

general stimulation and activation in rehabilitation after

brain damage. Animal laboratories often provide an envi-

ronment with little stimulation. This should be taken into

account when evaluating the clinical relevance of animal

studies on long-term functional outcome after brain lesions.
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 INTRODUCTION

Most surviving stroke and trauma patients improve to some ex-

tent with time. Compared to the intense research on how to res-

cue neurons in the acute stage, surprisingly little clinical and ex-

perimental research has been directed towards the question of

why a certain degree of functional recovery is possible despite

permanent tissue damage. There is increasing evidence, however,

that functional improvement after permanent brain lesions is re-

lated to lesion-induced plasticity in the intact brain tissue (1–7).

An important question is to what extent postischemic events can

influence lesion-induced plasticity. This review will deal with the

influence of postischemic environmental factors – alone or in

combination with specific therapeutic interventions – after ex-

perimental focal brain infarction, as well as its possible clinical

implications.

ENVIRONMENTAL EFFECTS ON THE INTACT

AND LESIONED BRAIN

Many studies have shown that housing intact animals in an en-

riched environment, i.e. in larger cages with access to various

activities, significantly alters behaviour, brain morphology and

biochemistry (8–11). Likewise, postischemic housing in an en-

riched environment can influence outcome after focal brain in-

farct induced by proximal or distal ligation of the middle cerebral

artery (12-14), even when the transfer to an enriched environ-

ment is delayed for 15 days after the arterial occlusion (15).

ENVIRONMENTAL EFFECTS ON

POSTISCHEMIC GENE EXPRESSION

Ischemia is a strong inducer of gene expression in the brain. Many

genes are induced within minutes or hours after ligation of the

middle cerebral artery ischemia, often returning to normal levels

within the first 24 hours (16, 17). Less is known about late post-

ischemic events. Considering the well-known role of the brain-

derived neurotrophic factor (BDNF) in brain plasticity in intact

animals (18), we have tested the hypothesis that postischemic

housing in an enriched environment could lead to an enhanced

BDNF gene expression. Contrary to the hypothesis, a marked

increase in BDNF gene expression during days 2–12 observed in

rats housed in standard environment was inhibited in rats housed

in enriched environment (18). Significant differences with stan-

dard rats above and enriched rats below baseline were observed

in the peri-infarct region, contralateral cortex and hippocampus 2

to 12 days after induction of ischemia. The BDNF protein levels

12 days after the middle cerebral artery occlusion likewise showed

a significant reduction in the peri-infarct area but not in the

contralateral hemisphere (19).  A similar dampening of the post-

ischemic gene expression in rats housed in enriched environment

was seen for NGFI-A mRNA. With this gene, however, a late

significant increase in the enriched group was observed 30 days

after the lesion (20).

Cortical networks adjacent to a focal brain infarct are hyperex-

citable because of an imbalance between excitatory and inhibi-

tory synaptic function due to increased N-methyl-D-aspartic acid-

receptor-mediated excitation and reduced GABAergic inhibition

(21). Hyperexcitability has also been recorded in the contralat-
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eral hemisphere one week after middle cerebral artery occlusion

(22). Both a detrimental and a beneficial plasticity-promoting role

of lesion-induced hyperexcitability have been proposed (23). One

possible interpretation of the BDNF data would be that early pos-

tischemic dampening of the peri-infarct neuronal hyperactivity

activity might be beneficial. The possible interactions between

trophic and growth inhibitory factors (24) also need to be consid-

ered. The time-related patterns of postischemic gene expressions

are obviously very complex. Ten days after a phototrombotic le-

sion the gene expression patterns of 1176 genes, analyzed using

DNA macro arrays, showed extensive changes with up-regula-

tion on several genes in both hemispheres and down-regulation

of other genes in the ipsilateral areas (25).

ENVIRONMENTAL EFFECTS ON NEURONAL

MORPHOLOGY AND DENDRITIC SPINES

Dendritic spines, which are the primary postsynaptic targets of

excitatory glutaminergic synapses in the mature brain, have been

proposed as primary sites of synaptic plasticity (26–28) Current

data indicate that the dendritic tree is covered with a variety of

excitable synaptic channels operating on different time scales and

with activity-dependent sensitivity enabling a sophisticated neu-

ronal plastic capability (29).

Environmental enrichment can enhance dendritic branching and

increase the number of dendritic spines and synapses in intact

animals (9–11). Rearing animals in social isolation has the oppo-

site effect (30). In intact rats, reach training has been shown to

selectively alter dendritic branching in layer II and III pyramidal

neurons in rat motor-somatosensory forelimb cortex (31). Hous-

ing in an enriched environment significantly increases the num-

ber of dendritic spines both in cortical layers II–III (Fig. 1) and

V–VI, indicating that free activities in an enriched environment

lead to a more general stimulation of dendritic spines (32, 33).

Rats postoperatively housed in an enriched environment had sig-

nificantly more spines in pyramidal neurons in layers II–III than

rats in standard cages in the cortex contralateral to the infarct

cavity. Neurons in layers II–III have extensive connection with

other cortical areas, and synaptic plasticity in cortical horizontal

connections is proposed to underlie cortical map reorganisation

(34). In the deeper cortical layers, both enriched and standard

rats had a reduced number of dendritic spines, presumably re-

lated to the extensive loss of callosal connections from the infarct

area.

ENVIRONMENTAL EFFECT ON LESION-

INDUCED PROGENITOR CELL

DIFFERENTIATION

Environmental enrichment can enhance neurogenesis in intact

animals (35–37). With the aim to study if it also influences le-

sion-induced neurogenesis, rats were placed in an enriched envi-

ronment either 24 h or 7 days after an occlusion of the middle

cerebral artery distal to the striatal branches. BrdU, a marker of

cell division, was giving during the first week following the oc-

clusion. Whereas there was no difference in net survival of newly

formed cells between enriched and standard animals 4 weeks later,

both enriched groups normalised the neuron to astrocyte ratio in

Fig. 1. Dendritic branching of

pyramidal neurons in layer III in

somatosensory cortex in rats housed in

standard (left) or transferred to an

enriched (right) conditions for 3 weeks.

Confocal imaging after microinjection

of Lucifer yellow. From Johansson &

Belichenko  (33) by permission.



Environmental influence on recovery after brain lesions   13

J Rehabil Med Suppl 41, 2003

the newly formed cells in the hippocampus, a ratio that was mani-

fold increased in postischemic rats housed in standard environ-

ment because few new astrocytes were formed (38). A low num-

ber of astrocytes may be insufficient to support the newly formed

neurons. So far most studies on brain plasticity have concentrated

on neuronal changes. There is increasing evidence, however, that

astrocytes take an active part in synaptic plasticity (39–44), and

ultrastructural evidence for increased contact between astrocytes

and synapses in rats reared in a complex environment suggests a

close relationship between astrocyte plasticity and experience-

induced synaptic plasticity (45).

ENVIRONMENT, SOCIAL INTERACTION AND

PHYSICAL ACTIVITY

Enriched environment includes opportunities for various physi-

cal activities and social interaction. Studies aimed at comparing

the effect of enriched environment with that of social interaction

and repetitive physical exercise in the form of wheel running have

shown that social interaction was superior to running and that

enriched environment resulted in the best performance (13, 14).

These results are in agreement with a study on intact animals that

indicated that social grouping could not account for the full ef-

fects of enriched environment (46). Likewise, in a study compar-

ing the effect of exposure to enriched environment versus run-

ning before inducing bilateral cortical lesions, running did not

yield the same protective effect from postoperative impairment

as enriched environment did (47). Based on studies on stem cell

proliferation and survival in the rodent hippocampus it has been

proposed that an increase in voluntary exercise might be respon-

sible for most beneficial effects of environmental enrichment in

intact animals (48) and physical exercise has been proposed to

enhance brain health and plasticity (49). There is little doubt that

physical activity is essential for keeping the vascular system in

good shape and thus can help reduce stroke incidence. Further-

more, there is evidence that preclinical physical activities are

important for outcome in patients after stroke (50). However,

experimental studies have shown that motor learning but not re-

petitive physical exercise generates new synapses in the cerebel-

lar cortex in adult rats (51, 52), and that skill learning but not

strength training induces cortical reorganisation (53). Likewise,

extensive repetition of digit movements in the absence of motor

learning did not alter digit representations within the primary

motor cortex of the squirrel monkey (54). One important factor

in enriched environmental housing is the fact that the environ-

ment is changed and new objects are included a few times a week.

The fact that environmental enrichment induces a widespread

increase in dendritic spines (32, 33), enhances the effect of skill

training (55) and interacts with other interventions as described

below indicates in my view that repetitive muscle training is not

the major or only effect of an enriched environment.

ENVIRONMENTAL INTERACTION WITH NEO-

CORTICAL TRANSPLANTATION AND DRUGS

In adult rats, foetal neocortical tissue transplanted in the infarcted

area 1–9 weeks after the ischemic event survives and receives

afferent connections from ipsilateral and contralateral cortex, the

thalamus and several other host brain subcortical nuclei (56).

Although sensory stimulation of the rat vibrissae enhances the

metabolic activity in grafts, indicating that such connections can

be functionally relevant (57), no effect on functional outcome is

observed unless the rats are housed in enriched environment (58,

59). When grafting was performed three weeks after the arterial

ligation there was no significant difference between grafted and

non-grafted infarcted rats housed in an enriched environment,

and both groups improved significantly more than grafted rats in

standard environment. However, if grafted one week after the

arterial ligation, the enriched environment further enhanced func-

tional outcome, and the secondary thalamic atrophy was signifi-

cantly reduced (59). Furthermore, afferent connections from the

host brain develop more extensive connections within the graft

in rats housed in enriched environment (60). These results are

consistent with studies from other neural grafting models (61).

Selegiline, an irreversible monoamine oxidase B inhibitor,

which alone has no beneficial effect after focal cerebral ischemia,

reduces behavioural and cognitive deficits when combined with

housing in enriched environment (62). In the opposite direction,

amphetamine, which in other experimental studies has been shown

to improve outcome, had no additional effect in rats housed in

enriched environment (63), and unpublished data indicate that

diazepam has no negative effect in rats housed in enriched envi-

ronment either. The additive or neutralising effects of stimulat-

ing environments on drugs may perhaps be explained by the re-

lease of catecholamines, glutamate and a number of hormones

induced by physical activities (64). The interaction between drugs

and environment is clearly an area that needs more attention.

ARE EXPERIMENTAL DATA ON ENRICHED

ENVIRONMENT RELEVANT FOR STROKE

PATIENTS?

The animal data presented above demonstrate that postischemic

environmental intervention can influence outcome after focal brain

ischemia. As for the relevance for human stroke patients, two

arguments can be raised. One is that standard laboratory housing

is a deprived environment not comparable to normal human life

and thus the result obtained in animal studies may not be relevant

for patients. This is a valid argument, which, however, leads to

the conclusion that a stimulating environment should be the base

in all animal recovery studies to which specific rehabilitative in-

terventions can be added. An opposite argument would be that

some elderly stroke patients might have lived a rather isolated
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life before stroke onset, also a valid argument considering the

fact that half of the stroke patients in e.g. Sweden are 75 years or

older. In any case, for most patients, the transfer from home to

hospital after an acute stroke involves a drastic change in envi-

ronment that justifies attempts to optimise the hospital and reha-

bilitation environment.

CLINICAL DATA

There are no randomised clinical studies comparable to the ani-

mal studies described above. Because early mobilisation can re-

duce secondary thromboembolic events, pneumonia, and mortal-

ity in acute stroke, it is recommended in many countries that stroke

patients be admitted to stroke units with specially trained medi-

cal and nursing staff, co-ordinated multidisciplinary rehabilita-

tion, and education programs for patients and their families (66).

No study has shown to what extent potential beneficial effects

are due to specific rehabilitation strategies and time spent in

physiotherapy and occupational therapy, or to the non-specific

effect of a more stimulating environment, with competent staff

that encourages and supports the patient and family. Mere admit-

tance to a stroke unit may increase the expectations of stroke pa-

tients. Expectation plays a significant role in drug treatment and

other interventions. Current neuroimaging data suggest that ex-

pectation in the form of placebo treatment can lead to biochemi-

cal and neurobiological events related to the medical problem

treated. Thus there is evidence that placebo and opioid analgesia

share a neuronal network (66), that placebo treatment in depressed

patients induces some of the effects of antidepressant drugs pos-

sibly related to dopamine and endorphin (67), and that systemic

injections of saline in patients with Parkinson’s disease can in-

duce dopamine release in the brain (68). Could stroke units be

considered an enriched environment and, if so, could they have

the effect of reducing post-stoke depression or improving cogni-

tive functions after stroke? These comments are clearly specula-

tive and no corresponding hypotheses have to my knowledge been

tested.

A small retrospective study published 20 years ago indicated

that the view a patient saw through his or her window influenced

recovery after abdomen surgery, i.e. patients who could look out

over a park left the hospital earlier and needed less drugs than

those looking at a wall (69). Both ancient and contemporary lit-

erature are full of stories about how our environment and activi-

ties influence our lives in health and disease. Perhaps future re-

search will find some evidence to support such widely held hu-

man beliefs.

CONCLUDING REMARKS

Clinical studies indicate that the patient’s attitude, activities and

social interaction may influence the functional outcome and qual-

ity of life after stroke (70). However, it is difficult to separate

genetic and environmental factors in patients. Every patient is

unique. The capability to handle crises, including sickness and

disease, varies. Rehabilitation strategies that are meaningful for

the individual patients are likely to be the most effective. Perhaps

it is particularly important in neurorehabilitation to stimulate pa-

tients with little initiative of their own. It is important to set goals

that are attainable for the individual patient. What is an enriched

environment for patients will differ according to personality and

earlier life experiences. The role of music and art in cognitive

rehabilitation, for instance, has so far been little explored.
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