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Recent findings concerning the regenerative potential of

the adult brain suggest a more pronounced plasticity than

previously thought. One such finding is the generation of

new neurons in the adult brain (neurogenesis). Loss of

neurons has long been considered to be irreversible in the

adult human brain, i.e., dead neurons are not replaced.

The inability to generate replacement cells is thought to

be an important cause of neurological disease and impair-

ment. In most brain regions, the generation of neurons is

generally confined to a discrete developmental period. Ex-

ceptions have recently been described in several regions

of the brain that have been shown to generate new neu-

rons well into the postnatal and adult period. One of the

best characterized regions is the subgranular zone of the

dentate gyrus in the brain, where granule neurons are gen-

erated throughout life from a population of progenitor/

stem cells. Furthermore, recent findings suggest that

neurogenesis may be of importance for memory function

as well as mood disorders. Several very important ques-

tions can be formulated on the basis of these discoveries,

for instance, what factors influence the generation of new

neurons and whether it is possible for enhanced neuro-

genesis to contribute to functional recovery.

Key words: stem cells, neurogenesis, plasticity, enriched en-

vironment

J Rehabil Med 2003; suppl. 41: 17–19.

Correspondence address: Peter Eriksson, Institute of Clini-
cal Neuroscience, Sahlgrenska Academy, University of
Göteborg, SE-413 45, Sweden.
E-mail: Peter.Eriksson@neuro.gu.se

INTRODUCTION

The plasticity in fetal and young nervous system is pronounced

and thus differs from the mature nervous system, which shows

an age-dependent decrease in plasticity, adaptive ability, and

neurogenesis (1, 2). The adult brain is vulnerable because of its

decreased adaptive capacity; therefore, new methods of enhanc-

ing plasticity in the mature nervous system might be of relevance

in both pathology and physiology. Several studies have shown

that environmental stimuli, including environmental enrichment,

induce neuroanatomical changes in the rodent brain (3–6).

Changes in the hippocampus include increased dendritic arboriza-

tion (7), increased hippocampal thickness (8, 9), and an increased

number of glial cells (10).

In general, replacement of neurons following degeneration or

damage is not a characteristic of the mammalian brain. Neuronal

loss is thus considered permanent. Prolonged postnatal neuro-

genesis has been described in the granule cell layer of the hip-

pocampal formation (1, 11–14). Neurogenesis has been shown to

persist well into adulthood in the rodent (15–17). Recently, neuro-

genesis was shown in the adult human dentate gyrus (18). Neu-

ronal progenitor cells reside in the subgranular zone (SGZ) of the

dentate gyrus, where they continuously proliferate, migrate into

the granule cell layer, and differentiate into granule cells (19, 20).

These newborn granule cells express markers of differentiated

neurons and have morphological characteristics corresponding

to differentiated granule cells (16, 19, 21). Furthermore, they es-

tablish axonal processes into the mossy fiber pathway and form

synaptic connections with their targets in hippocampus CA3 (22,

20). The neurogenesis in the dentate gyrus is very interesting,

since the hippocampal region with the dentate gyrus is intimately

associated with spatial learning and memory (23).

The proliferation of progenitor cells in the SGZ can be influ-

enced by the administration of N-methyl-D-aspartate (NMDA)

receptor antagonists or by the removal of the adrenal glands (24,

25). Furthermore, neurogenesis in the dentate gyrus in young mice

has been shown to be facilitated by enriched environments. It

was shown that exposure to enriched environments leads to an

increased number of surviving newly formed granulae cells and

an increased total number of neurons in the dentate gyrus (26–

28). Plasticity is reduced with increasing age, and recent studies

have demonstrated that proliferation of progenitor cells also de-

creases with age (2). Therefore, we have initiated studies to de-

termine whether the proliferation of progenitor cells and the sub-

sequent generation of new neurons within the dentate gyrus in

adult rats is induced by environmental stimuli.

Rats housed in an enriched environment show an increase in

the rate of neurogenesis (the number of newborn neurons). This

effect is mediated via an increased survival of stem cell-derived

neurons as opposed to an increased proliferative rate. In addition,

these animals perform better spatial learning paradigms (26, 29).

In the adult mammalian brain, there is at least one other site of

active cell proliferation and neurogenesis throughout life: the

subventricular zone, from which newly generated neurons mi-

grate via the rostral migratory stream to the olfactory bulb (30,

31). Active cell proliferation also takes place in the cortex. How-

ever, the progeny of the proliferating cells remain undifferenti-

ated and only rarely become mature glia in vivo. Mitotically ac-
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tive cells isolated from cortex have in vitro been shown to be

heterogeneous and to commit mainly to the glial lineage or re-

main undifferentiated. However, cortical precursors can be in-

duced to become multipotent neural progenitors and generate

neurons after exposure to basic fibroblast growth factor (FGF-2)

in vitro (32). Progenitor cells from the adult rat spinal cord, an-

other non-neurogenic region, also constitute a population of cyc-

ling glial precursors which, similarly to cortical progenitors, be-

come multipotent upon in vitro stimulation with FGF-2. Further-

more, upon transplantation to the hippocampus the multipotent

neural progenitors differentiated into neurons in the dentate gran-

ule cell layer, while when transplanted back into the spinal cord

they only generated glial cells (33). Thus, microenvironmental

cues are pivotal for fate determination of neural progenitor cells,

and the neocortex seems to normally lack the necessary instru-

mental cues to generate neurons. This perception has been chal-

lenged, since it has been suggested that cortical neurogenesis

persists in rat and primate cortex (34–36). Another study, how-

ever, reports that physiological cortical neurogenesis could not

be detected in adult primates (37). Several in vivo studies have

proposed the occurrence of lesion-induced cortical neurogenesis.

Magavi et al. (38, 39) demonstrated induction of neurogenesis in

adult mouse cortex by selective apoptotic degeneration of corti-

cothalamic neurons in lamina VI. Gu et al. (40) and Jiang et al.

(41) reported induction of cortical neurogenesis in a photo-

thrombotic stroke model and after transient middle cerebral ar-

tery (MCA) occlusion, respectively.

Postischemic environmental enrichment is well known to im-

prove functional recovery in experimental models of stroke (42,

43) and also after traumatic brain injury (44). Since environmen-

tal enrichment has been shown to increase neurogenesis in the

hippocampus and increase hippocampus-dependent learning and

memory (26–29, 45), and since effects of environmental enrich-

ment on hippocampal cell genesis were demonstrated in the postis-

chemic phase (46), we aimed to also examine whether postis-

chemic housing in enriched environment might influence cortical

cell genesis and how such an influence could be related to func-

tional recovery. We hypothesize that postischemic environmen-

tal enrichment increased cell genesis and even a putative neuro-

genic response in the cortex in parallel with sensorimotor im-

provement. Ongoing studies in our laboratories and others will

show to what extent gliogenesis and/or neurogenesis contribute

to the functional improvement after experimental stroke consis-

tently observed in association with enriched environment. Fur-

ther studies along these lines may in the future lead to more re-

fined and efficient programs for neurorehabilitation.
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