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A data glove is a typical input device to control a virtual
environment. At the same time it measures movements of
wrist and � ngers. The purposes of this investigation were to
assess the ability of BrainMaker2, a neural network, to
recognize movement patterns during an opposition task that
consisted of repetitive self-paced movements of the � ngers in
opposition to the thumb. The neural network contained 56
inputs, 3 hidden layers of 20 neurons, and one output.
The 5th glove ’952 (5DT), a commercial glove especially
designed for virtual reality games, was used for � nger
motion capture. The training of the neural network was
successful for recognizing the thumb, the index � nger and
the ring � nger movements during the repetitive self-paced
movements and neural network performed well during
testing.
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INTRODUCTION

In the past few years virtual environment (VE) technology has
undergone a transition (1) that has taken it out of the realm of
expensive toy into that of functional technology. Up to now the
use of VE was focused mainly on applications for surgery and
military simulations.Recently, in the � eld of Mental Healthcare,
the considerable potential of VEs has been recognized for
scienti� c study, assessment and rehabilitation of a wide range of
mental disorders and functional impairments (2, 3). A European
project, the VREPAR (Virtual Reality Environment for Psycho-
neuro-Assessment and Rehabilitation) (4) has shed a new light
on the use of virtual reality in neurorehabilitation (5).

A number of today’s technological problems are in areas
where neural network technology has demonstrated potential:
things like pattern recognition and classi� cation, speech and
image understanding, robotic controls, sensor processing, opti-
mization and learning. This growing power of handling informa-
tion allows e.g. on-line patient databases (6), remote consulta-
tion (7) and the use of robots for rehabilitation (8, 9). A neural

network simulator is a program that creates a model of arti� cial
neurons and the connections between them and then trains this
model. Neural networks, just like people, learn by example and
repetition. At a fundamental level, all neural networks learn
associations. With a medical neural network, all you have to do
is show it the related data for patients with the disease and data
for those without the disease; the network will � gure out the
subtle relationships in your data. In that way a trained network
can recognize e.g. abnormal movements (10). Once the network
‘understands’what ‘abnormal’ means, it can either adjust move-
ments by manipulating the created virtual environment or guide
the patient directly through impedance-controlled resistance. A
data glove is a typical input device to control a virtual environ-
ment. At the same time it measures movements of wrist and
� ngers (11). As such, it provides an important role for the
evaluation and treatment of abnormal movements in patients.

At the moment different kind of data gloves are available.
Some of them are restricted to professional virtual reality
laboratoriesand therefore are rather expensive.Other gloves that
are designed exclusively for games are cheaper but make no
pretensions to expert knowledge in the rehabilitation � eld.

The aim of this study is to evaluate if a neural network can be
trained by the data � ow of a commercial data glove to recognize
movement patterns during an opposition task that consisted of
repetitive self-paced movements of the � ngers in opposition to
the thumb. This kind of � nger exercise is often used as a quick
evaluation of dexterity and functional performance in patients
recovering from stroke. The typical displacement and speed
pro� le of each � nger in relation to the others during this task is a
prime requirement for advanced prehension.

METHODS

Instrument

The 5th glove ’95 (version 1.00, 1996) (Fig. 1) is a data glove that can
measure pro/supination of the forearm and � exion/extension of the
� ngers and wrist. Only � exion and extension of the � ngers were taken
into account for this study. The sensors for � exion and extension are
based on an optical � ber technology. Each � nger is � tted with one
sensor, which measures the average � exion and extension of that � nger.
Each sensor provides an 8-bit resolution (i.e. 256 positions). The optic
� bers are stitched into the elastic Lycra tissue of the glove. The 5th
Glove ’95 connects to a standard 9-pin RS-232 serial port. This serial
connection will allow the computer to communicate with the device. The
data glove has an external 9V power supply. The data glove starts up in
command mode. This mode accepts and transmits serial information
using 19200 baud, 8 bits, 1 stop bit, and no parity. The serial link only
utilizes the TX (transmit), RX (receive) and GND (ground) lines. A
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computer program (Glovestat) is constructed to record and save
numerically the � exion and extension of the � ngers. The sampling rate
was 95Hz. Dasylab2 (Version 200.10 Dasytec2) was used for the
graphical representations of the data. Examples of printouts are shown in
Fig. 2.

BrainMaker2 (California Scienti� c Software) performed the build-
ing, training and testing of a standard back-propagation neural network.
Back-propagation is a supervised learning method in which an error
signal is fed back through the network, altering weights as it goes, to
prevent the same error from happening. BrainMaker2 was run under
DOS 6.0 on a PC-486 with 8Mb RAM.

Design and subjects

The study comprised 66 subjects (41 women and 25 men). The mean
age § SD was 47 § 18.1 years, range 21–86 years. Two women and one
man reported left-hand dominance. All subjects included were volun-
teers with no signs of disease or injury. The subjects had to perform an
opposition task that consisted of repetitive self-paced movements of the
� ngers in opposition to the thumb. They were asked to do this as
accurately and rapidly as possible during 20 seconds. The signals coming
from the 2nd and 4th � nger sensors had a poor quality and were therefore
excluded from further analysis. The procedure was repeated after 30
minutes. On comparison, the difference between both measurements

turned out to be fractional and the procedure showed a high test–retest
reliability for the thumb, the index � nger and the ring � nger. No gender
differences were found. The overall performing speed was slightly
slower for the oldest subjects (unpublished data), but this was non-
essential for training the neural network in view of the information on
which the neural network based its predictions, generalizations or
recognitions.

Measurement procedure

The subjects were seated close to the table with the elbow on the table.
The subjects were asked to put on the glove. The glove was tightened to
� t the subjects’ hand.

Next the shoulder joint was positioned in 20–25° and the elbow joint
in 90–95° of � exion. The wrist was held at the middle course of
pronation and supination. During a brief period the subjects were
allowed to try the movement. Then the experiment was started.

Analysis

For each � nger a random snapshot of 3 seconds was taken from the
20-second recording. The onset of this snapshot coincided always with
the initiation of the pincer movement between the thumb and the index
� nger. The strips were brought into the neural network. This network
contained 57 input nodes (19 £ 3 seconds), each node representing one
of the 19 selected values/second (§1 value each 0.053 second). There
were 3 hidden layers of 20 neurons and one output neuron representing
the name of the pattern (the thumb, the index � nger or the ring � nger).
The number of neurons in the hidden layers was calculated according to
the following rule: Input ‡ Outputs/2. This resulted in 29 neurons. In the
case of several hidden layers the number has to be decreased by around
one-third. This resulted in the use of 20 neurons. Implementing too many
neurons in the hidden layers has the disadvantage that the network
memorizes the data without understanding the meaning behind the data
structure. No learning will be achieved and, as such, the network will not
generalize.

Usually, the more facts you collect, the better the network can be
trained. Accordingly, the data obtained from test and retest was put
together. By doing so 396 examples (2 £ 3 � nger £ 66 subjects) were
entered into the network for learning. BrainMaker automatically set an at
random sample of 40 examples aside for testing the network on data it
has never seen before. Neural networks are often sensitive to the order in
which the training facts are presented. If training facts are highly
ordered, or grouped in a non-random way, BrainMaker may have more
dif� culty learning patterns. Mixing up, or randomizing, the order of the
facts before training will force the network to generalize over the entire
training set (12). Therefore the computer shuf� ed the training facts 4
times. The learning rate speci� es how large a correction BrainMaker
should make when there is a network error. A learning rate of 1.00 was
used which is usually safe and a good place to start. By default, the value
of the smoothing factor was 0.9 and each individual layer’s value was
1.0. The smoothing factor determines how much of the error correction
will be made at the time the error is encountered and how much will be
averaged into successive runs. For each layer of the network a sigmoid
neuron transfer function was used. This curve approaches a minimum
and maximum value at the asymptotes. Mathematically, the exciting
feature of these curves is that both the function and its derivates are
continuous. This option works fairly well and is often the transfer
function of choice (13). Training error tolerance and testing error
tolerance specify how accurate the neural network output must be to be
considered correct. This error tolerance can be speci� ed to BrainMaker
in terms of a percentage of the output range. For example, if the output
value can be anything from 0 to 100, the range is 100. A 0.05 error
tolerance is equivalent to 5 (5% of 100) (14). In this study no corrections
were made to the network during training if all the outputs were within a
tolerance of 0.05. During testing, errors are reported for facts outside a
testing tolerance of 0.1. Learning stopped when 90% of the answers were
correct.

RESULTS

The training of the neural network was successful. After 11

Fig. 1. The 5th glove ’952. Fifth Dimension Technologies.
Pretoria, South Africa.

Fig. 2. Graphical representation of movement patterns during an
opposition task that consisted of repetitive self-paced movements of
the � ngers in opposition to the thumb. Above: thumb; middle:
index � nger; below: ring � nger. X-axis: time in seconds. Y-axis:
position (minimum = 0, maximum = 256 (8 bit resolution)).
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minutes of training, the network learned the movement pattern
generated by the thumb, the index � nger and the ring � nger
during an opposition task that consisted of repetitive self-paced
movements of the � ngers in opposition to the thumb.

The network performed well during testing and made a high
score. Of the presented 40 unknown test cases, 32 out of them
were recognized correctly by the network as the movement
pattern of the thumb, the index � nger or the ring � nger.

DISCUSSION AND CONCLUSIONS

Conventional evaluation of many neurological and musculo-
skeletal disorders involves the examination of movement. The
examination of a subject’s hand function, in particular, is a
central part of visual diagnostic procedures.

The purpose of this article was to investigate the feasibility of
integrating neural nets into a virtual reality data glove. The
major objective of applying virtual reality and associated
technologies to rehabilitation is to enhance diagnostic and
therapeutic activities in a range of medical � elds by allowing a
medical expert team the opportunity to view and analyze
movement patterns as they happen in a controlled environment
(15). Because of their massive parallelism, neural nets can
process information and carry out solutions almost simulta-
neously. If a problem involves recognition or classi� cation, a
neural network will do it faster, more consistently, and better
than a person. These � ndings are in line with results obtained in
Parkinson patients. Gloves were used to quantify tremors (16)
and an automated form of video image analysis was successfully
applied to classi� cation of movement disorders (17).

In skilled hand activities, the speci� city of the muscle
activation pattern determines whether a patient can grasp an
object or not. A neural network tested for � nger movement
recognition can be placed on a chip, which is then placed into a
glove’s electronics that control data � ow to the chip, rather than
having software control the data � ow. The operation becomes so
much faster that during a hand rehabilitation session neural
networks can control processes as they happen, which is known
as real-time operation. The idea is that under these circum-
stances connections among perceptual and motor groups of
neurons can interact with each other and almost simultaneously
with new information from senses, without the intervention of a
therapist that summarizes and interprets the information (18).
While this technology appears to offer many advantages for
rehabilitation applications, the � rst step for such program is for
the developer to perform a realistic cost/bene� t analysis (19).
This is the reason why this study used a commercial and
affordable data glove for testing its usefulness in neurorehabili-
tation. Our study proved that a neural network was capable to
recognize movement patterns generated during pincer move-
ments.

A major problem of the 5th glove is, that it is only available in
one size. This is probably the cause of the poor results obtained
from the second and fourth � nger. Indeed, if only those subjects
were considered in which the glove � t at best, no problems were

found for the mentioned � ngers. Another plausible explication is
that some persons have been using an adduction–opposition
strategy during the thumb–fourth � nger test. The glove cannot
sense this movement. An important drawback is that only an
average � exion–extension of the � ngers is measured. This
makes the glove in its actual design unsuitable for recognizing
and adjusting very complex movements such as palmar
prehension, commonly used to grasp small objects and for
many skilled hand activities. Unfortunately, many patients with
a brain injury never reach the advanced recovery stages during
which complex � nger coordinationbecomes possible and it must
be kept in mind that for those patients the glove can play a part in
the rehabilitation of lateral prehension, cylindrical or spherical
grasp.

A fundamental issue that has important implications re-
garding the ultimate utility of these new therapeutic approaches
for rehabilitation is the concept of generalization of this
treatment. As VEs are developed to treat patients, it will become
imperative to demonstrate that the results have some relevance
or functional impact on users’ real world behaviour (20).

Although the application of virtual reality appeals strongly to
patients and physicians, the institutional and implementation
barriers have proven formidable, and progress is slow.
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