INTRODUCTION

Physical therapists (PTs) commonly prescribe specific treatments for their patients with the goal of improving patient outcomes (1). Assuming the treatment is appropriate, improved outcomes are expected if the patient is adherent to the prescription. One proposed prerequisite to patient adherence is the patient’s ability to perform the treatment independently. A patient is independent in performance if he or she performs the treatment correctly without any assistance. A patient may perform his or her treatment at the instructed duration, frequency and intensity level; however, if the patient is not independent in the performance of the treatment program as defined, outcomes may be negatively affected. We believe it is as important to assess the patient’s ability to perform the treatment independently as it is to assess how often he or she performs the treatment.

In studies of the relationship between treatment and outcomes, parameters such as the duration, frequency and intensity of the treatment are commonly measured (2–7). To measure adherence, self-report questionnaires are typically used to determine the frequency of performance; however, these questionnaires provide no measurement of the quality of performance. Quality of performance is important because the patient may report that they are performing the treatment as prescribed; however, the performance may be suboptimal, i.e., incorrect. In this situation, the patient would not be able to adhere to the prescribed treatment, and treatment would need to be adjusted to the patient’s ability level.

The patient’s ability to perform treatment independently is often assessed by a physical therapists (PT) through observation. No standardized method to assess performance has been described, particularly for patients with musculoskeletal pain conditions. Standardized methods to assess patient performance may be helpful in decisions regarding treatment prescription and progression, which will improve the treatment effectiveness, and thus, patient outcomes.

To develop standardized methods of assessment, factors that influence the patient’s ability to perform the treatment independently must be considered. We propose 2 factors that influence independent performance of treatment: cognition and psychomotor skill. In the current study, cognition refers to the patient’s ability to understand the key concepts underlying the prescribed treatment and how the key concept relates to his or her overall limitations. The key concept refers to the primary goal underlying the exercise or activity of daily living (ADL).
METHODS
Development process: operational definitions and procedures

The performance assessment was developed and standardized by the
senior author (LVD) in collaboration with GWH and JAE. All contribu-
tors had experience treating patients with musculoskeletal pain
problems (median time 17 years, range 5.5–21 years). For this study,
we chose to assess activities commonly used in the treatment of LBP
(8, 9). Activity in this context refers to the therapeutic exercise or ADL
being assessed. A list of the activities and key concepts that were
assessed for reliability are provided in Table I. Operational definitions
for activities and responses were established and the procedures for
testing the 2 factors proposed to contribute to independent performance
(knowledge and performance) were developed for each activity.

The first step in the development process was to decide on the key
concept for each of the possible activities that could be included in a
patient’s treatment program. For example, the key concept to be learned
for the ADL of getting in and out of bed was to avoid twisting or bending
in the low back region. The second step was to decide on, and define, the
possible responses for knowledge of the key concept and performance of
the exercise or ADL. There were two possible responses for knowledge
of the key concept; independent or dependent. A patient was independent
in his or her knowledge if he or she was able to verbalize the key concept
for the activity without verbal cues from the therapist. The patient was
given one chance to verbalize the key concept. A person was dependent
if he or she required verbal cues or demonstration of the key concept.

The possible responses for performance included: (i) independent; (ii)
required verbal cues; or (iii) required verbal cues and physical assistance.
The operational definition for each response is provided in Appendix I.

Table II lists the possible combinations of decisions for judgments of
knowledge and performance made by the PT during the assessment.

The third step was to standardize the procedures and decision-
making for assessment. To assess the patient’s independence the
therapist systematically reviews each activity prescribed (exercise or
ADL). The PT proceeds through a series of steps to make the judgment
about the patient’s ability level. First, the patient is asked to perform
an activity. If the patient is able to perform all aspects of the activity
without verbal cues or physical assistance from the PT, the patient is
judged to be independent in both knowledge and performance. The
assumption of independence in knowledge is based on the proposal that

Table I. *Activities included to test rater reliability

<table>
<thead>
<tr>
<th>Exercises</th>
<th>Key concept†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push up in sitting</td>
<td>Unweight back</td>
</tr>
<tr>
<td>Flatten low back against the wall in standing</td>
<td>Relax back to wall</td>
</tr>
<tr>
<td>Return from forward bending</td>
<td>Don’t arch back; Move in hips</td>
</tr>
<tr>
<td>Hip flexor stretch in hook lying</td>
<td>Keep low back flat</td>
</tr>
<tr>
<td>Hip lateral and medial rotation in prone</td>
<td>Don’t let pelvis move</td>
</tr>
<tr>
<td>Flattening lower back in sitting in a chair</td>
<td>Flatten back; Contract abdominals; Relax legs</td>
</tr>
<tr>
<td>Small squat in standing</td>
<td>Contract abdominals; Flatten back</td>
</tr>
<tr>
<td>Rock back in quadruped</td>
<td>Contract abdominals; Push with hands</td>
</tr>
<tr>
<td>Abdominal exercise in hook lying</td>
<td>Keep low back flat</td>
</tr>
<tr>
<td>Knee flexion in prone</td>
<td>Don’t let pelvis tilt into support surface</td>
</tr>
<tr>
<td>Standing: Relax back against wall</td>
<td>Relax back; Don’t actively push back to wall</td>
</tr>
<tr>
<td>Assume the quadruped position</td>
<td>Relax back down toward support surface</td>
</tr>
<tr>
<td>Hip abduction and lateral rotation in hook lying</td>
<td>Don’t let pelvis move; Don’t rotate pelvis</td>
</tr>
<tr>
<td>Hip lateral rotation in side lying</td>
<td>Don’t let pelvis move; Don’t hike pelvis</td>
</tr>
<tr>
<td>Shoulder flexion in quadruped</td>
<td>Don’t let trunk move; Don’t rotate trunk</td>
</tr>
<tr>
<td>Single leg standing in front of a table</td>
<td>Keep pelvis level</td>
</tr>
<tr>
<td>Hip abduction and adduction in side lying</td>
<td>Don’t let pelvis move; Don’t hike pelvis</td>
</tr>
<tr>
<td>Activities of Daily Living</td>
<td>Key concept</td>
</tr>
<tr>
<td>Rolling in bed</td>
<td>Move as unit</td>
</tr>
<tr>
<td>Assume proper sleeping position</td>
<td>Don’t lie rotated, shifted or side bent in trunk</td>
</tr>
<tr>
<td>Assume proper sitting position</td>
<td>Don’t sit on edge of chair; Feet must be supported</td>
</tr>
<tr>
<td>Sit to stand</td>
<td>Bend in hips; Don’t arch back</td>
</tr>
<tr>
<td>Supine to sit</td>
<td>Move trunk as a unit; Don’t side bend or rotate in trunk</td>
</tr>
<tr>
<td>Standing</td>
<td>Contract abdominals often; Feet apart; Don’t stand on one leg</td>
</tr>
<tr>
<td>Stair climbing</td>
<td>Contract abdominals; Use handrail for support</td>
</tr>
<tr>
<td>Lifting</td>
<td>Squat; Lift with legs not back</td>
</tr>
</tbody>
</table>

*Activities refer to the therapeutic exercises or activities of daily living being assessed.
†Key concept refers to the primary goal underlying the exercise or activity of daily living and is considered important for the patient to understand
in order to perform the activity.
of standardized patient scenarios. The PTs were examined separately to assess intra- and inter-rater reliability, each PT participated in a set of standardized patient scenarios role-played by the senior author. The PT made judgments about knowledge and performance during each patient scenario (Appendix II). Each therapist’s judgments were recorded without discussion with the examiner or the other therapist at the time of testing or during the interval between tests.

Results

The percentage agreement and kappa values to index intra-rater reliability were as follows: PT 1: % = 95 and k = 0.90 (95% confidence interval (CI) 0.70–1.00) for knowledge; % = 95 and k = 0.92 (95% CI 0.60–1.00) for performance and PT 2: % = 85 and k = 0.68 (95% CI 0.38–0.97) for knowledge; % = 94 and k = 0.80 (95% CI 0.53–1.00) for performance. The percent agreement and kappa values to index inter-rater reliability were % = 81 and k = 0.74 (95% CI 0.50–1.00) for knowledge, and % = 91 and k = 0.72 (95% CI 0.47–0.97) for performance.

Discussion

In order to assess whether treatment is effective in improving a patient’s outcomes, the patient must be adherent to the treatment prescribed. To be adherent to the prescribed treatment, the patient must be able to perform the treatment independently. We have described standardized methods to assess components that are important for independence; a patient’s knowledge of the key concepts underlying treatment and the physical ability to perform his or her treatment. We have also demonstrated that PTs can make judgments of the patient’s knowledge and performance reliably. Using the benchmarks proposed by Landis & Koch (12), trained PTs demonstrated substantial to excellent intra-
Fig. 1. Examples of the decisions and actions of the physical therapist based on the different responses of the patients.
rater reliability and substantial inter-rater reliability in assessing independence in a treatment program during standardized patient scenarios. We believe our proposed methods could be useful in the clinical and research settings.

In the clinical setting, our standardized methods can be used to determine if the patient is independent in each aspect of his or her treatment program. If a patient is not independent, the PT can use the information from the assessment to identify deficits that may result in suboptimal presentation. Specific strategies to address the identified deficits can then be used to facilitate patient independence. Fig. 1 provides an example of the decisions and actions a PT might make based on different responses demonstrated when a patient is asked to perform a prescribed strengthening exercise.

In addition to providing methods to assess independence in a prescribed exercise, our methods provide standardized procedures to assess patient performance of ADLs. Performance of ADLs is commonly assessed in patients with neuromuscular conditions using standardized instruments, such as the Functional Independence Measure (13), the Barthel Index (14) and the Modified Rankin Scale (15). We are unaware, however, of any formal assessment measures to assess ADL performance in patients with musculoskeletal pain conditions in the outpatient orthopedic setting.

It is possible that the PTs’ performance assessing the activities (exercises and ADLs) included in the reliability study is not generalizable to therapist performance assessing other activities. There are 3 primary reasons we believe that the PTs’ performance is likely to be generalizable. First, we tested a range of exercises and ADL items that are commonly prescribed to patients with LBP (8, 9). We included exercises that focused on: (i) pain relief; (ii) strengthening of trunk muscles; and (iii) trunk control. The ADL items included activities as simple as bed mobility to more difficult activities such as lifting. Secondly, the standardized patient scenarios included examples of patients who displayed a variety of levels of cognition (key concepts) and psychomotor behavior (physical performance). Finally, the therapists currently applying the measures when treating patients in our RCT have reported no difficulty making judgments of any of the exercises or ADLs prescribed.

The proposed methods for assessment of independence could be useful in future clinical treatment trials. Researchers can use the described methods to collect information about a patient’s independence in his or her treatment program in conjunction with the more common methods of measuring patient adherence. We believe our methods provide a systematic assessment that will provide additional information about the patient’s ability to adhere to the prescribed treatment. This additional information may provide insight into possible barriers to patient adherence and to outcomes of treatment.

The methods we have proposed are practical for the clinical and research setting. We are currently performing a RCT to compare 2 conservative treatment programs for people with chronic LBP. Thus far, the proposed methods have been applied by 4 different PTs in the treatment of 90 patients. The PTs have reported that the system does not result in additional time in treatment. They report that the system has been very useful in formally assessing a patient’s abilities and determining the specific factors preventing the patient from attaining independence. A retest of the PTs’ ability to assess independence after using the assessment for one year was acceptable (unpublished data).

One factor that may have contributed positively to the rater reliability is the PTs’ memory or carry-over from testing session 1 to testing session 2. To test reliability, the same standardized patient scenarios (SPSs) were used in the first and second testing sessions. It is possible that the PTs remembered the SPSs and their decisions from the first testing session. Steps were taken during the study, however, to reduce the likelihood of memory or carry-over effects. We implemented 2 strategies recommended by Sim & Wright (16). The first strategy was to present a large number of SPSs in random order. Specifically, 26 independent scenarios were used and the examiner varied the order of the SPSs from one testing session to the next. The second strategy recommended by Sim & Wright (16) was to provide a 2-week interval between the first and second testing sessions. In addition, there was no discussion of the results of the first session before the second session. Finally, at the end of the second testing session, the examiner asked each PT if he or she remembered any of the SPSs or their responses from the first testing session. Each PT responded that he or she was unable to recall his or her responses to individual SPSs. As in any study of rater reliability using a test-retest design we cannot guarantee that memory did not play a role in the therapists’ reliability values. We found the SPS approach to be useful, however, because of the control of behavior variability that could be introduced with the use of actual patients with a test-retest design.

One potential limitation to our study is the use of SPSs instead of actual patients to assess rater reliability. We chose to use SPSs for 2 reasons. First, SPSs allow the examiner to provide a variety of clinical presentations that can be used across multiple testing sessions. Second, patient variability is easily controlled for using SPSs by demonstrating the same performance in each test session. To adequately test rater reliability, the patient’s performance must remain stable across the testing sessions. Patient performance, however, may vary from one testing session to another due to a number of factors. In particular, a patient’s performance may change due to his or her previous experience. For example, once the patient is instructed to perform an activity correctly during the first testing session, he or she may demonstrate improved performance during the second testing session. The improvement would result in different performances being assessed during the 2 testing sessions.

We believe the choice to use SPSs was appropriate for initial investigation of our standardized methods. Using SPSs is a practical and feasible method to assess rater performance that has been previously used to assess both medical student performance (17–19) and physician clinical practice (20–22). We recognize, however, that a study to assess therapists using the described system while treating actual patients would be an important addition to assessment of rater reliability.

In conclusion, using standardized patient scenarios, trained PTs displayed substantial to excellent intra-rater reliability and
substantial inter-rater reliability in assessing independence in a treatment program. Individualized treatment may be more efficient and effective if PT can make reliable judgments about the patient’s knowledge of key concepts related to the treatment and performance of the treatment.

ACKNOWLEDGMENTS

We would like to acknowledge Michael J. Strube PhD for statistical support and discussion of his model of factors that may influence outcomes of adherence assessment.

This work was supported by grant 5-R01 HD047709 to Dr Van Dillen from the National Center for Medical Rehabilitation Research, National Institute of Child Health and Human Development. Support for Dr Harris-Hayes provided by grant K12 HD055931 from the National Center for Medical Rehabilitation Research, National Institute of Child Health and Human Development, and National Institute of Neurological Disorders and Stroke and grant 1 U11 RR 024992-01 from National Center for Research Resources.

REFERENCES

APPENDIX I. Operational definitions

Knowledge of key concept (cognition)

Operational definitions for responses to assessment of knowledge:

Independent: The patient is able to verbalize the key concept for the exercise or activity of daily living (ADL) as instructed during treatment without verbal cues from the therapist.

Dependent: The patient requires some verbal assistance or demonstration of the key concept.

Performance of activity (psychomotor skill)

Operational definitions for responses to assessment of performance:

Independent: The patient is able to perform all aspects of the exercise or ADL without physical assistance or verbal cues from the therapist. All aspects of the exercise or ADL include performance without deviations that would detract from the intended effect of the exercise or ADL. In addition, the assumption is if the patient is independent in performance he or she is also independent in his or her knowledge of the key concept.

The patient would be rated as independent in knowledge of the key concept.

Verbal cues

The patient requires some verbal cues from the therapist on how to perform the exercise or ADL correctly. Given verbal cues the patient is then able to perform all aspects of the exercise or ADL, correctly without physical assistance.

Verbal cues with physical assistance

The patient requires both: (i) verbal cues from the therapist on how to perform the exercise or ADL; and (ii) physical assistance for correct performance of all aspects of the exercise or ADL.
APPENDIX II. Treatment progress table: activities of daily living and exercises.

<table>
<thead>
<tr>
<th>Activity/exercise</th>
<th>Review key concept</th>
<th>Knowledge of key concept</th>
<th>Performance</th>
<th>Visit/ date initiated</th>
<th>Reps (if given)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling in bed (Move as unit; Avoid rotation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleeping position (Don’t lie with trunk rotated or side bent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting (Back well supported; Don’t rotate, side bend, or shift trunk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking (Don’t rotate or hike pelvis; Shorten steps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hook lying: hip flexor stretch (Don’t let pelvis rotate; Keep pelvis still)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side lying: hip lateral rotation (Don’t let pelvis move; Don’t hike pelvis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prone: hip lateral and medial rotation (Don’t let pelvis move)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boldface = key concept for activity of daily living or for exercise.
VC: verbal cues; PA: physical assistance; I: independent; Reps: repetitions.