REVIEW ARTICLE

FEEDBACK INTERVENTIONS FOR IMPAIRED SELF-AWARENESS FOLLOWING BRAIN INJURY: A SYSTEMATIC REVIEW

Julia Schmidt, BSc1,2, Natasha Lannin, PhD1,3,4, Jennifer Fleming, PhD2,5,6 and Tamara Ownsworth, PhD7

From the 1Royal Rehabilitation Centre, Sydney, Sydney, 2The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, 3Rehabilitation Studies Unit, The University of Sydney, Sydney, 4The Institute for Safety, Compensation and Recovery Research, Melbourne, 5Princess Alexandra Hospital, and 6Centre for Functioning and Health Research, Metro South Health District, and School of Psychology, Griffith University, Brisbane, Australia

Objective: To determine the effectiveness of self-awareness interventions that involve a component of feedback for adults with brain injury.

Design: Systematic review.

Data sources: Randomized and non-randomized studies identified by searching CINAHL, Cochrane Systematic Review Database, Embase, Medline, OTSeeker, PsybITE, Psychnfo, Web of Science, clinical trial registries, and reference lists of eligible articles.

Results: Twelve studies of varied methodological quality met the inclusion criteria, of which 3 were randomized controlled trials involving a total of 62 people with brain injury of mixed aetiology. The type of feedback intervention and outcomes assessed were heterogeneous. The pooled estimate of improvement in self-awareness after completing a feedback intervention was of moderate effect size (Hedges' adjusted g = 0.64; 95% confidence interval: 0.11–1.16).

Conclusion: Feedback interventions produced modest improvements in self-awareness. Further research is required to determine the effects of integrating feedback interventions into rehabilitation programmes and the impact of this on functional outcome.

Key words: self-knowledge; insight; awareness; feedback.

Correspondence address: Julia Schmidt, Brain Injury Unit, Royal Rehabilitation Centre, Sydney, PO Box 6, Ryde NSW, 1680, Australia. E-mail: Julia.Schmidt@royalrehab.com.au

Submitted February 23, 2011; accepted May 30, 2011

INTRODUCTION

People with acquired brain injury often have impaired self-awareness (1, 3, 7, 8). Self-awareness deficits in brain injury have been reported as occurring in up to 97% of patients with traumatic brain injury (TBI) (1) and being dependent on injury severity (2). Self-awareness is described as a person’s ability to perceive his or herself objectively while maintaining a sense of subjectivity (3–5). It is defined clinically as an understanding of one’s abilities and limitations and how this impacts on task performance in everyday living (6). Decreased self-awareness is suggested to occur due to a number of neuroanatomical as well as cognitive impairments (7, 8).

The theoretical model proposed by Crosson et al. (9) discusses self-awareness as a 2-tiered construct. The first level is intellectual awareness, defined as the ability to understand that physical and cognitive function is impaired (for example, awareness of a memory deficit) (1). The second level is referred to as on-line awareness, which is the ability to recognize one’s impairments within a task (9, 10). Within the framework of on-line awareness, it is suggested that there are two further types of awareness: on-line emergent awareness (the ability to describe difficulties as they occur) and on-line anticipatory awareness (the ability to predict difficulties due to one’s impairments) (10).

There is debate within the structures of various models of awareness in previous research (11). Some research has reported that the types of awareness are hierarchical (one must first obtain intellectual awareness in order to experience on-line awareness) (9), while others bodies of research report an interactional model between the types of awareness (10). Research has demonstrated little correlation between intellectual awareness and on-line emergent awareness (r = 0.184) and between intellectual awareness and on-line anticipatory awareness (r = 0.009), but strong correlation between on-line emergent and on-line anticipatory awareness (r = 0.717), suggesting that at least 2 separate constructs exist; intellectual awareness and on-line awareness (11).

Regardless of the theoretical framework, it is well recognized that impaired self-awareness impacts negatively on the outcomes of rehabilitation and limits successful functioning in everyday life (12–14). People with impaired self-awareness following brain injury have decreased understanding of the functional impact of brain injury-related impairments (1, 15), which can contribute to unrealistic goals for the future (15). Consequently, these individuals may present as difficult to engage in therapy (1), with reduced motivation and poor acceptance of the use of compensatory strategies (16–18). In the longer term, this may lead to difficulty achieving and maintaining productive and independent living (1, 19). Alternatively, people with a brain injury who are aware of, and understand their limitations, are able to set more realistic goals and typically experience greater community reintegration (16, 20). Developing self-awareness in people with brain injury is therefore an important outcome for rehabilitation (17).

There are various rehabilitation interventions designed to facilitate the development of self-awareness in people with...
brain injury. These include neuropsychological programmes, psychotherapy, compensatory and facilitatory approaches, structured experiences, direct feedback, videotaped feedback, confrontational techniques, cognitive therapy, group therapy, game formats and behavioural intervention (21). Awareness interventions commonly incorporate an element of feedback on the person’s abilities (21). Feedback can be provided verbally to a person with a brain injury, by a therapist describing the positive and negative aspects of the person’s task performance (22, 23); visually, by watching video-recordings of the person’s own task performance (24–26); and in an individual therapy or group context, incorporating the use of peer feedback (3, 23). Many authors have emphasized timely, specific and consistent feedback as being an important component of all awareness interventions (3, 23, 27–30).

The use of feedback for enhancing performance is also a fundamental component of the rehabilitation process (6). The provision of feedback on assessment results, progress in therapy, and attainment of goals is considered an important component of education for a person with a brain injury that enhances rehabilitation outcomes (17). Despite its widespread use, there are currently no clinical guidelines for providing feedback in brain injury rehabilitation (21). This systematic review evaluates all studies, including randomized and non-randomized trials, that employ feedback interventions for improving self-awareness in people after a brain injury.

Objective

The aim of this systematic review was to determine the effectiveness of self-awareness interventions, which involve a feedback component on clinical outcomes, in adults with brain injury. Specifically, the review sought to determine whether:

- interventions with a component of feedback effectively increase self-awareness and other clinically relevant outcomes, namely, functional task completion and satisfaction with performance;
- there is a pattern in the intervention or type of approach (e.g. group vs individual; verbal vs video feedback) that is most effective

METHODS

Eligibility criteria

Studies that investigated the effects of a self-awareness intervention involving a feedback component were included in the review. Studies reported in languages other than English were not included, as translations were not available. Further eligibility criteria for inclusion in the review were as follows:

- Types of studies: studies were designed to have at least a level of evidence of IV (case-series, poor quality cohort and case-controlled studies), but not including level Ia (systematic reviews). Studies included in the meta-analysis were restricted to randomized (level Ib) or quasi-randomized (level II) studies in which random allocation to group has not been followed precisely (31) (Table I).
- Population: participants were over 16 years of age. In accordance with recommendations of the Cochrane Collaboration Injuries Group, (32) at least 50% of the participants in each study had brain injury.
- Intervention: interventions involved a feedback component, which was defined a priori to include: (i) group sessions incorporating feedback; (ii) direct verbal feedback from therapists; (iii) audio-visual feedback (the person with the brain injury observes their own performance from an audiovisual recording such as a video); (iv) experiential feedback (the person with the brain injury completes a task with a pre-defined specific criteria to attain); (v) feedback on cognitive test performance; (vi) feedback on overall functional task completion, such as activities of daily living; (vii) sensory input (including visual or auditory feedback) when the person with a brain injury is performing a task; (viii) identification of errors that a person with a brain injury makes by the therapist or person (including self-evaluation training); and (ix) identification of strengths and limitations by the therapist or person with a brain injury. The definition of feedback did not include biofeedback or feedback about a physical impairment, as the focus of this systematic review was feedback as a meta-cognitive strategy to promote improved task performance, rather than feedback designed to adjust performance at the level of physical impairment. The definition did not include psychological and counselling interventions without specific feedback or education/psycho-education without individual feedback, since the purpose of this review centred on the efficacy of feedback interventions.
- Outcome: studies included a measure of self-awareness at baseline and post-intervention. Measures of self-awareness included both standardized measures for intellectual awareness and observational assessments to determine on-line awareness (improvement of task performance using pre-defined specific criteria). Measures were permitted to be discrepancy ratings, comparison of patients’ self-ratings with objective test performance, and/or standard neuropsychological tests. The primary clinical outcome was an increase in self-awareness; the secondary outcomes, when available, included improvement in functional task completion (activities of daily living) and satisfaction with performance.

Table I. Levels of evidence

<table>
<thead>
<tr>
<th>Quality of the study</th>
<th>Definition of quality level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1a</td>
<td>Systematic reviews (with heterogeneity) of randomized controlled trials</td>
</tr>
<tr>
<td>Level 1b</td>
<td>Individual randomized controlled trials</td>
</tr>
<tr>
<td>Level 2a</td>
<td>Systematic review (with heterogeneity) of cohort studies</td>
</tr>
<tr>
<td>Level 2b</td>
<td>Individual cohort study or low quality randomized controlled trials</td>
</tr>
<tr>
<td>Level 2c</td>
<td>Outcomes research, ecological studies</td>
</tr>
<tr>
<td>Level 3a</td>
<td>Systematic review (with homogeneity) of case-control studies</td>
</tr>
<tr>
<td>Level 3b</td>
<td>Individual case-control study</td>
</tr>
<tr>
<td>Level 4</td>
<td>Case-series and poor quality cohort and case control studies</td>
</tr>
<tr>
<td>Level 5</td>
<td>Expert opinion without explicit critical appraisal</td>
</tr>
</tbody>
</table>

Based on Wiley-Blackwell Levels of Evidence (31).

Search strategy

Electronic databases were searched for the period 1980 to 3 August 2010: Cochrane Systematic Review Database (including Cochrane database of systematic reviews, Cochrane central register of controlled trials and the Database of Abstracts of Reviews of Effects (DARE)), Medline, CINAHL, PsycINFO, Embase, Web of Science, PsycBITE, and OTSeeker. In addition, the clinical trial registers at controlled-trials.com, clinicaltrials.gov and actr.org.au were also searched for unpublished trials. Bibliographies of included studies were then searched recursively until no more studies were identified.

The following keywords were mapped to MeSH/subject headings: (i) feedback, therapy, intervention, psycho-education, rehabilitation, treatment; (ii) self-awareness, awareness insight, unawareness; (iii) stroke, brain injury, brain injuries, brain damage, traumatic brain injuries, brain trauma, traumatic, brain encephalopathy, cerebral vascular accident, CVA. The full search strategy for each database is available from the first author on request.
Process of review

As per the PRISMA guidelines for systematic reviews (33), 2 reviewers (IS and NL) independently screened search results for potentially eligible studies. Lack of consensus about the eligibility of a particular study was resolved by discussion with a third reviewer (JF), which was warranted for 3 articles. No reviewers screened the studies for inclusion into the review, rated the studies for quality, or extracted data from studies in which they were authors.

Rating of study quality

Methodological quality was independently assessed by 2 reviewers. Quality of randomized and pseudo-randomized trials was rated using the PEDro scale (34). This scale rates controlled trials based on random and concealed allocation of participants, the similarities of participants at baseline, blinding of subject, therapists, and assessors, the dropout rate, the use of intention to treat analysis and reporting point measures, measures of variability and between-group statistical comparisons. A total score out of 10 was derived for each study from the number of criteria satisfied. Single-subject designed trials, also known as single-participant designs, were rated using the Single Case Experimental Design (SCED) scale (35). The SCED scale rates single-case trials based on the description of the target behaviour, precise and repeatable measures, design with a control condition, multiple baseline and treatment measures reported as raw data, inter-rater reliability of measurements, statistical reporting of effect sizes, blinding of the assessor, and the ability for the treatment to be replicated and generalized (35). A total score out of 11 was derived for each study according the number of criteria satisfied.

Data extraction

Two reviewers independently rated all studies for quality and extracted data investigating the effects of feedback components on self-awareness. The inter-rater reliability of quality ratings was acceptable (agreement = 91.5%). In instances where data were not presented in the published paper, raw data were requested from authors; results from one published study (22) were obtained in this manner.

Data synthesis

Where more than one study was available on a particular outcome, the homogeneity of participants, interventions, and outcomes were assessed. Clinical homogeneity was assessed by the authors and statistical heterogeneity was calculated using I^2, where an I^2 of greater than 30% in the presence of significant χ^2 test result (p-value < 0.10) was interpreted as indicating heterogeneity (32). Results of consistent studies were pooled in a meta-analysis, using standardized mean difference and fixed effect model to control for differences in measurement tools (32).

Where a single study reported results from more than one measure within a particular outcome area, it was assumed that the first-reported outcome was the primary outcome, and only the primary outcome was included in the meta-analysis. Meta-analysis of continuous outcomes was performed with a fixed-effects model using Review Manager 5, producing a standardized difference in means for each outcome (Hedges’ adjusted g), which is the difference between the means divided by the pooled standard deviation (36). Standardized differences were interpreted according to guidelines suggested by Cohen (37): 0.2 represents a small effect, 0.5 a moderate effect, and 0.8 a large effect.

RESULTS

Overall, 1,070 potential papers were identified and 1,058 of these were excluded. Twelve studies met the criteria for inclusion (6, 22, 26, 38–45, 47) (Table II). Of the 12 included studies, 2 were randomized controlled trials, 1 was a quasi-randomized controlled trial and 9 employed AB designs (pre–post comparisons) (46). Fig. 1 summarizes the search results and the number of articles excluded in each stage of the review.

Within the included studies, 14 different feedback techniques or intervention strategies were used. These included: (i) identification of errors during task performance by the therapist and/or person with a brain injury; (ii) discussion between the therapist and a person with a brain injury on the discrepancy of the rating of task performance; (iii) identification of strengths and limitations by the therapist and/or person with a brain injury (prior to task completion and following task completion); (iv) experiential feedback (repetitive completion of task); (v) direct and concrete verbal feedback from therapists; (vi) audiovisual feedback (observing own performance from an audiovisual recording such as a video); and (vii) post-task feedback on functional task performance (including strategy identification and provision).

The methodological quality of the trials was moderate, with scores for randomized controlled trials ($n = 3$) ranging from 4 to 7 (mean 5.67) out of 10 on the PEDro scale. In the study by Ownsworth et al. (22), 3 groups were compared, each having a wait-list control condition. The groups included individualized education, facilitator feedback and goal-setting; group-based education, peer feedback, and goal-setting; and a combined condensed individual and group-based intervention. In the study by Goverover et al. (39), goal-setting, predicting errors, anticipating errors, strategy planning, self-estimation of performance and task reflection was compared with conventional practice with direct corrective feedback. The third trial included in by Cheng & Man (38), education and functional training sessions (including goal-setting, verbal feedback and self-prediction of performance) was compared with conventional therapy. Methodological quality of the single-case studies ($n = 9$) was moderate, with scores ranging from 5 to 10 (mean 7.22) out of 11 on the SCED scale. Each study is summarized in Table I.

Efficacy analyses

A meta-analysis was completed using the randomized controlled trials and quasi-randomized controlled trials. Although each trial...
<table>
<thead>
<tr>
<th>Name of study</th>
<th>Study design</th>
<th>Quality ratinga</th>
<th>Population</th>
<th>Setting</th>
<th>Interventions</th>
<th>Measure of self-awareness</th>
<th>Intervention effect on self-awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownsworth et al., 2008 (22)</td>
<td>Randomized controlled trial</td>
<td>PEDro: 7/10</td>
<td>n = 35</td>
<td>Outpatient, Australia</td>
<td>Individualized intervention included education, facilitator feedback and goal-setting. Group-based intervention included group-based education, peer feedback, and goal-setting. Condensed individual and condensed group-based intervention.</td>
<td>Patient Competency Rating Scale self-rated and carer-rated</td>
<td>Increase in awareness of deficits in the 2 groups that had intervention provided in a comprehensive individual and group setting, compared with the group that did not have any intervention.</td>
</tr>
<tr>
<td>Goverover et al., 2007 (39)</td>
<td>Randomized controlled trial</td>
<td>PEDro: 6/10</td>
<td>n = 30</td>
<td>Inpatient, USA</td>
<td>Prior to the task, participants defined goals, predicted performance, anticipated errors, chose strategy to overcome difficulties, and assessed amount of assistance. After the task, participants self-estimated performance, discussed with therapists, and reflected by writing in a journal.</td>
<td>Assessment of Awareness of Disability; Self-Regulation Skills Interview; Awareness Questionnaire</td>
<td>No statistically significant change in task-specific awareness between the experimental and the control group after the intervention, but scores generally improved for the experimental group and worsened for the control group. There was significant improvement in self-regulation for the experimental group compared with the control group.</td>
</tr>
<tr>
<td>Cheng & Man, 2006 (38)</td>
<td>Quasi-randomized controlled trial</td>
<td>PEDro: 4/10</td>
<td>n = 21, Mean age: 55</td>
<td>Inpatient, Hong Kong</td>
<td>Educational sessions and experiential functional training sessions including concrete verbal feedback, self-prediction of performance and goal-setting exercises through daily tasks.</td>
<td>Self-Awareness of Deficits Interview</td>
<td>Within-group analysis showed improvement in awareness in experimental group, between-group analysis showed statistically significant scores for experimental group.</td>
</tr>
<tr>
<td>Ownsworth et al., 2006 (41)</td>
<td>Pre–post design with multiple baselines collected across settings</td>
<td>SCED: 10/11</td>
<td>n = 1</td>
<td>Outpatient, Australia</td>
<td>Role reversal and observation of task, including observing video of performance of task and discussing strategies to check process.</td>
<td>Error frequency; Error behaviour (% self-corrected); Awareness Questionnaire; Self-Awareness of Deficits Interview</td>
<td>Decrease in error frequency (average of 44% reduction); increase in self-correction of errors and correction with non-specific prompts; decrease in discrepancy ratings of self-awareness between participant and therapist (not a clinically meaningful change), therefore demonstrating increase in intellectual awareness; no significant improvement in online awareness.</td>
</tr>
<tr>
<td>Ownsworth et al., 2010 (26)</td>
<td>Pre–post design</td>
<td>SCED: 9/11</td>
<td>n = 2</td>
<td>Outpatient, Australia</td>
<td>During performance of a functional task, the therapist waited ("paused") if the participant started to make an error to allow self-correction of the error and provided non-specific direction ("prompt") if the error continued. The therapist affirmed the participant for correct performance. Discussions occurred to encourage independence in task completion; role reversal and video analysis of performance also occurred.</td>
<td>Error frequency (self-corrections); error behaviour (therapist corrected errors and checks); Participant Competency Rating Scale</td>
<td>Increase in participants' self-corrected errors, decrease in therapist corrected errors, decrease in number of times the participant checked to ensure accuracy of task performance, and decrease in self-awareness of functional competence after intervention.</td>
</tr>
<tr>
<td>Ownsworth et al., 2010 (26)</td>
<td>Pre–post design</td>
<td>SCED: 9/11</td>
<td>n = 1</td>
<td>Outpatient, Australia</td>
<td>The therapist affirmed the participant for correct performance on the steps, waited ("paused") for the participant to self-correct the error, and then provided a specific prompt if the participant had not corrected of the error.</td>
<td>Error frequency (self-corrections); error behaviour (therapist corrected errors and checks); Participant Competency Rating Scale</td>
<td>No significant increase in self-corrected errors, no significant change in therapist corrected errors, significant increase in checks after treatment sessions, improvement in perception of functional competence after intervention.</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>SCED</td>
<td>Number</td>
<td>Mean age</td>
<td>Diagnosis</td>
<td>Setting</td>
<td>Intervention Details</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Gajar et al., 1984 (44)</td>
<td>Pre–post</td>
<td>SCED: 8/11</td>
<td>2</td>
<td>22 years</td>
<td>TBI</td>
<td>USA</td>
<td>Feedback was given in real-time during group conversations by visually displaying when participants were demonstrating good or poor conversation skills. Participants self-monitored their conversations by using a visual display. Participants reflected on their performance and analysed their behaviour during the conversations.</td>
</tr>
<tr>
<td>Fleming et al., 2006 (40)</td>
<td>Pre–post</td>
<td>SCED: 7/11</td>
<td>4</td>
<td>33 years</td>
<td>Mixed brain injury</td>
<td>Australia</td>
<td>Meaningful occupations were selected and performed. Multiple feedback techniques were used including self-prediction and self-evaluation of performance, timely and non-confrontational verbal feedback and videotaped feedback.</td>
</tr>
<tr>
<td>Toglia et al., 2010 (45)</td>
<td>Pre–post</td>
<td>SCED: 7/11</td>
<td>4</td>
<td>38 years</td>
<td>TBI</td>
<td>USA</td>
<td>Initially, participants were not provided with prompts or assistance. Strategy training and mediation was provided by interrupting participants during task performance with brief periods of intense mediation as needed. The therapist encouraged and reinforced the strategies used by the participants.</td>
</tr>
<tr>
<td>Rebmann & Hannon, 1995 (43)</td>
<td>Pre–post</td>
<td>SCED: 7/11</td>
<td>3</td>
<td>22 years</td>
<td>Mixed brain injury</td>
<td>USA</td>
<td>Participants were shown what they predicted and how it differed from actual performance on test results. Positive reinforcement was provided if participants had less discrepancy between predicted and actual performance. Feedback given using a problem solving approach.</td>
</tr>
<tr>
<td>Schlund, 1999 (6)</td>
<td>Pre–post</td>
<td>SCED: 7/11</td>
<td>3</td>
<td>36 years</td>
<td>TBI</td>
<td>USA</td>
<td>Each participant identified an inappropriate behaviour. Participants were informed about the frequency of inappropriate behaviour on a weekly basis in psychology sessions. This review allowed subjects to observe changes in the frequency of their behaviour over time.</td>
</tr>
<tr>
<td>Coetzer & Corney 2001 (42)</td>
<td>Pre–post</td>
<td>SCED: 5/11</td>
<td>22</td>
<td>41 years</td>
<td>Mixed brain injury</td>
<td>UK</td>
<td>Results of awareness tests explained to participants, emphasising the awareness difficulties. An opportunity for discussion and questions was provided.</td>
</tr>
<tr>
<td>Landa-Gonzalez, 2001 (47)</td>
<td>Pre–post</td>
<td>SCED: 5/11</td>
<td>1</td>
<td>34 years</td>
<td>TBI</td>
<td>Florida USA</td>
<td>In conjunction with daily multi-context occupational activities, participants predicted the accuracy of task performance, used self-rating scales, and were encouraged to self-monitor performance. Therapists used role reversal and checklists.</td>
</tr>
</tbody>
</table>

The PEDro scale rates controlled trials (34) and the SCED scale rates single-case trials (35).

used different outcome tools, the primary outcome areas were the same (improvement in self-awareness, functional task completion or satisfaction with performance) and the interventions were sufficiently homogeneous. Pooling of data was therefore considered appropriate using a standardized mean difference as an effect measure and a fixed effect within the analysis model, as this controls for differences in measurement tools (32).

Effect of feedback on self-awareness

Three studies (22, 38, 39) provided data on the efficacy of feedback training for improving self-awareness. The trials were sufficiently homogeneous with respect to participants’ characteristics, as participants were adults with brain injuries. The interventions were sufficiently homogeneous, as all interventions included an element of goal-setting, education, and verbal feedback from a therapist. The studies differed in setting from inpatient (38) to community-based (22, 39) and differed in the number of treatment sessions (6 (39), 8 (22) and 40 (38)). Data from 62 participants were pooled (31 participants allocated to feedback groups, 31 participants allocated to control groups only). Data from Cheng & Man (38) had the largest effect, with a standardized mean difference of 1.27 and a 95% confidence interval (CI) of 0.32–2.23. Overall, the 3 feedback interventions had a moderate effect on self-awareness (standardized mean difference = 0.64 favouring feedback intervention; 95% CI 0.11–1.16, p = 0.02).

Effect of feedback on functional task completion

The same 3 studies (22, 38, 39) provided data on the efficacy of feedback training for improving functional task completion (n = 62 participants pooled). The results from Ownsworth et al. (22) had the largest effect, with a standardized mean difference of 1.59 and a 95% CI of 0.58–2.60. In total, based on the included studies, feedback interventions had a large effect on functional task completion (standardized mean difference = 0.90 favouring feedback intervention; 95% CI 0.36–1.43, p = 0.01) (Fig. 2b).

Effect of feedback on satisfaction with performance

Two studies (22, 39) provided data on the efficacy of feedback training in terms of participant satisfaction with their functional task completion. The trials were moderately homogeneous with respect to interventions, participants and number of intervention sessions. Data from 41 participants were pooled (20 participants allocated to feedback groups, 21 participants allocated to control groups only). The results from Ownsworth et al. (22) had the largest effect, with a standardized mean difference of 1.29 and a 95% CI of 0.33–2.25. Based on included studies, feedback interventions had a large effect on participant satisfaction with performance (standardized mean difference = 0.83 favouring feedback intervention; 95% CI 0.18–1.48, p = 0.01).

DISCUSSION

Overall, this systematic review aimed to determine the effectiveness of self-awareness interventions that involve a feedback component on clinical outcomes in adults with brain injury. Of the 12 studies that were included in the review, 3 met the criteria for meta-analysis. All 3 clinical outcomes of self-awareness, functional task completion and satisfaction with performance
improved with statistical significance following interventions involving a feedback component. However, findings from the meta-analysis component of this review are dependent on only 3 clinical trials of varied quality. While meta-analysis yielded moderate to large standardized mean differences on pooling, the small sample sizes and heterogeneity in interventions resulted in wide CIs, thus suggesting that conclusions can only be tentative. The conclusion from this systematic review is that although these data imply that the feedback interventions can significantly improve self-awareness, functional task completion and satisfaction with performance, the current evidence-base on the efficacy of feedback is not substantial enough and further research is recommended. In particular, it is not possible to determine from these studies whether 1 form of feedback is more effective than another. Furthermore, none of the included studies reported a specific and structured feedback protocol used; rather, feedback was a component of a broader intervention for improving self-awareness and functional task completion.

This systematic review used a methodology designed to eliminate potential sources of bias, but this does not guarantee the absence of bias. The review findings may have been biased by publication bias and the inclusion of studies reported in English only. The key limitation of this review is that it includes only 3 randomized controlled trials. The majority of studies in this area are exploratory or use single-case study designs, and there is a lack of high-quality group level trials (21). Without concealed randomization and blinded evaluation of outcome, studies are more likely to show a positive result, and this must be taken into account when reviewing the literature (48). The quality of the included randomized controlled trials, however, was relatively high, scoring a mean of 5.7 out of 10 on the PEDro scale. Particular criteria on the PEDro scale are difficult to satisfy in studies of this nature (e.g. blinding of therapists is difficult or impossible in studies of therapy intervention). The single-case studies reviewed here were mostly of a high quality (mean SCED rating of 7.22 out of 11), and their results consistently reported positive outcomes.

Therefore, in addition to the results of the meta-analysis, the preliminary empirical support for feedback interventions improving self-awareness provides justification for further research in this area. Future randomized controlled trials should be designed to eliminate all types of bias (selection, measurement and intervention bias) and use consistent aspects of measurement for the type of self-awareness that is investigated (on-line or intellectual). In light of the current gaps in health economics in brain injury rehabilitation, future trials should also examine cost-effectiveness. Clinicians would additionally benefit from greater transparency of the content of intervention protocols, the training needed to implement them, and the clinical settings in which they have been evaluated. Assessment of the efficacy of feedback interventions from multiple sources (e.g. the perspectives of people with a brain injury, caregivers and therapists) would provide a more systematic approach for evaluating the clinical utility of such rehabilitation approaches.

ACKNOWLEDGEMENTS

Conflicts of interest: The authors do not have any competing interests in the completion of this study. There is no funding source that assisted with the completion of this study.

REFERENCES

19. Kreutzer J, Wehman P, Morton MV. Supported employment and