DEVELOPMENT AND VALIDATION OF AN INNOVATIVE TOOL FOR THE ASSESSMENT OF BIOMECHANICAL STRATEGIES: THE TIMED “UP AND GO” – ASSESSMENT OF BIOMECHANICAL STRATEGIES (TUG-ABS) FOR INDIVIDUALS WITH STROKE

Christina D. C. M. Faria, PT, PhD1,2, Luci F. Teixeira-Salmela, PT, PhD1 and Sylvie Nadeau, PT, PhD2

From the 1Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil and 2Centre de Recherche Interdisciplinaire en Réadaptation (CRIR), Institut de Réadaptation Gingras-Lindsay-de-Montréal, Université de Montréal, Faculté de Médecine, École de Réadaptation, Montréal, Québec, Canada

Objective: To develop and validate a clinical tool based on the biomechanical strategies exhibited by people with hemiparesis due to stroke during the performance of the Timed “Up and Go” test.

Design/methods: The Timed “Up and Go” Assessment of Biomechanical Strategies (TUG-ABS) was developed for subjects with stroke, based on the analyses of 3 sources of information: published evidence; opinions of rehabilitation professionals; and observations of TUG performances, followed by a multi-step approach, which involved the investigation of the reliability, content, and criterion-related validity of the preliminary version. Content validity was established by an expert panel, whereas intra- and inter-rater reliability was established by two independent examiners. Criterion-related validity was established by comparing the TUG-ABS scores at the item level obtained by independent analyses of video observations and the gold standard motion analysis system. The final tool included the items, which showed acceptable values for these psychometric properties. Results: The preliminary version consisted of 24 items with 3 response categories. Twenty-one items showed acceptable content validity (0.72 ≤ κ ≤ 1.00; p ≤ 0.01), 19 acceptable intra- and inter-rater reliability (0.36 ≤ κ ≤ 1.00; p ≤ 0.04), and 15 acceptable criterion-related validity (0.29 ≤ κ ≤ 1.00; p ≤ 0.04). Conclusion: The final developed 15-item TUG-ABS version proved to be valid and reliable for individuals with hemiparesis due to stroke, but it should be clinically validated before being used for clinical applications and research purposes.

Key words: stroke; assessment; mobility; instrument development; reliability; content validity.

INTRODUCTION

Stroke remains one of the most common causes of long-term disability worldwide and is a major public health concern (1). Thus, the understanding of the disabilities following stroke is a high priority for healthcare systems. Among all of the common disabilities of stroke survivors, those related to functional mobility are the most prevalent and disabling (2), and are the primary targets for rehabilitation. A widely recommended test to assess functional mobility after stroke (3–7) is the Timed “Up and Go” (TUG) (6), proposed as a modified timed version of the “Get-up and Go” test (8). The TUG has shown high levels of validity to assess functional mobility (6), is highly reliable (3, 5) and responsive (3, 4) for individuals with stroke, and is able to differentiate between people with stroke from the healthy elderly population (5) and people with stroke with various degrees of disabilities (4). It can also be used as a predictive measure of disabilities (4). Finally, the TUG is easily administered, requires no training or specialized equipment, and can be used in both community and institutional settings (7).

Despite all of the advantages of the TUG to assess the functional mobility of people with stroke, the only investigated outcome of this test is the time spent to perform the sequential activities (3–7). Although time provides a dimension of the tasks related to performance (6), as stated by Fisher et al. (9), time alone is insufficient for guiding interventions, treatment planning, or diagnoses and does not allow the functional construct be articulated and observed. Therefore, the TUG does not provide clinicians with sufficient information on the specific forms of movement dysfunctions that a subject may demonstrate.

Biomechanical strategies have been widely used by rehabilitation professionals to analyse performance and guide clinical decision-making. In addition, important changes in biomechanical strategies exhibited by individuals with stroke during the performance of activities evaluated by the TUG are
well established and widely employed for the understanding of stroke disabilities (10–13). Therefore, it is necessary to develop a clinical measure for the systematic evaluation of the biomechanical strategies during the TUG performance. This could provide clinicians with additional and relevant information on which to base clinical decision-making, in a feasible and systematic way, and with acceptable values of reliability and validity.

Despite the availability of some tools for observational gait analyses of people with stroke, one of the TUG activities, previous studies have highlighted some important limitations of their developmental processes and psychometric properties (14–17). In the clinical context, there is also a need for an adequate clinical gait assessment tool (16). Also, no tools exist regarding the clinical evaluations of the biomechanical strategies exhibited by people with stroke during the performance of all of the other TUG activities. Therefore, the aim of this study was to develop and validate a clinical tool based on the biomechanical strategies exhibited by individuals with stroke during their TUG performances: the TUG – Assessment of Biomechanical Strategies (TUG-ABS).

METHODS

The systematic processes of the development of the TUG-ABS followed previous guidelines and recommendations (18–20). First, the target population for the use of the TUG-ABS was determined: people with stroke over 20 years of age from the general community, with motor impairments, as characterized by residual weaknesses and/or increased tonus of the paretic lower limb (21, 22); with the ability to follow instructions; and able to perform the TUG with or without assistive devices.

Subsequently, the characteristics of the variables to be constituted as TUG-ABS items were determined. These variables were related to the biomechanical strategies adopted by subjects with stroke during the performance of the activities evaluated by the TUG. In addition, they should be able to differentiate between individuals with and without stroke and between individuals with stroke with various levels of TUG performances, since the TUG times were able to differentiate between subjects with stroke with mild, moderate, and severe neurological impairments (4). In addition, subjects with stroke could be divided into 3 sub-groups according to their TUG times: fast, moderate and slow (23). Finally, these variables should also be easily observed within the clinical contexts, i.e., with video or real-time observations.

In line with these guidelines (18–20), the preliminary version of the TUG-ABS was developed based on the analyses of 3 different sources of information: published evidence; opinions of rehabilitation professionals; and observation of TUG performances. The sampling of studies to be reviewed and participants (professionals or patients) was based on sampling to redundancy, the criterion recommended for the process to be reviewed and participants (professionals; and observation of TUG performances). The sampling of studies involved the investigation of its content validity (first phase), intra- and inter-rater reliability (second phase), and criterion-related validity (third phase). As previously recommended (18, 19), the product of this multi-step approach resulted in the final tool comprised of the items, which showed acceptable values for these 3 psychometric properties.

First phase: content validation of the TUG-ABS

Content validity was investigated by an expert panel, which was composed of internationally well-known PTs involved in stroke rehabilitation and who had multiple publications in refereed journals and conference proceedings. All of the procedures followed the specific recommendations regarding the selection and the use of the content of the experts (26), experts’ judgments in content-related validity evidence (27), and the determination and quantification of the content validity (28).

After the analyses of the preliminary version of the TUG-ABS, the experts judged the consistency of the conceptual definitions, the representativeness and the relevance in the domain of interest, clinical interpretations, clarity and understanding of each item, and of the nature of the overall instrument (26, 27). All of these characteristics were evaluated on a 4-point ordinal relevance or representative rating scale (1 = not relevant/representative; 2 = somewhat relevant/representative; 3 = quite relevant/representative; 4 = highly relevant/representative) (26, 28). The experts were also asked to make any suggestions or modifications for the adequacy of each item, as well as for the addition or exclusion of items. The following recommendation made by Polit et al. (28) was also adopted: “Unless only minor item revisions are needed based on the first round results, a second round of expert review should be conducted”, which should follow the same procedures.

The content validity was investigated according to traditional subjective processes (26, 27), which involved the discussion and consideration of any suggestions provided by the experts, and the quantitative content validity index (CVI) at the item level, which involved statistical analyses. As proposed by Polit et al. (28), the CVI was linked to the modified kappa-like index, which adjusts for the chance of agreement regarding relevance. The CVI was computed by the number of experts, who rated the items either at 3 or 4, divided by the total number of experts, for the proportion of agreement regarding relevance. The modified kappa-like index was calculated based on the probability of a chance occurrence, using the formula for a binomial random variable and the kappa designating agreement of relevance. To determine if the obtained CVI values were adequate, the table provided by Polit et al.

Development and validation of the TUG-ABS 233

J Rehabil Med 45
Table 1. Original 24 items in the preliminary version of the Timed “Up and Go” Assessment of Biomechanical Strategies and the added items recommended after the first round of expert panel analyses

<table>
<thead>
<tr>
<th>Original items</th>
<th>Added items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sit-to-stand</td>
<td>Turn</td>
</tr>
<tr>
<td>A) Support of the upper limb(s) associated with lateral trunk flexion and/or trunk rotation</td>
<td>A) Relationships between the outer and inner foot during the turn</td>
</tr>
<tr>
<td>B) Attempts used to perform the sit-to-stand associated with the strategy of approaching the pelvis to the extremity of the seat</td>
<td>B) Steps used only to perform the turn. (Do not consider the steps used for the gait immediately before and/or after the turn)</td>
</tr>
<tr>
<td>C) Momentum generated by the first anterior trunk flexion and extension of the trunk and lower limbs</td>
<td>C) Trajectory of the advancing lower limb</td>
</tr>
<tr>
<td>D) Lateral trunk deviation</td>
<td>D) Sequence of gait-turning-gait</td>
</tr>
<tr>
<td>E) Transition between the sit-to-stand and gait</td>
<td>E) Turning of the body – trajectory of the outward shoulder</td>
</tr>
<tr>
<td>Gait</td>
<td>New item Y</td>
</tr>
<tr>
<td>A) Step symmetry and step length</td>
<td>Feet positioning and active knee flexion</td>
</tr>
<tr>
<td>B) Initial contact with the heel</td>
<td></td>
</tr>
<tr>
<td>C) Hip extension during the stance phase</td>
<td></td>
</tr>
<tr>
<td>D) Swing phase – foot clearance off the ground</td>
<td></td>
</tr>
<tr>
<td>E) Step length considering the relationship between the foot of the initial contact and the foot of support</td>
<td></td>
</tr>
<tr>
<td>F) Displacement and/or trunk oscillation in the three planes of movement</td>
<td></td>
</tr>
<tr>
<td>G) Weight bearing on the lower limbs</td>
<td></td>
</tr>
<tr>
<td>H) Use of plantar flexion during the push-off</td>
<td></td>
</tr>
</tbody>
</table>
| **TUG performance, data collection was simultaneously obtained by the computerized motion analysis system. These examiners were not involved in any of the previous procedures, nor in the data collection and processing. No feedback or discussion was allowed between the examiners. In addition, to perform these analyses, clear and objective criteria were established and employed by both examiners for each item of the TUG-ABS, based on published information regarding the biomechanical strategies during the sit-to-stand (12, 42, 43), gait (11, 43–46), 180º-turning (10, 47, 48), and stand-to-sit (12, 42, 43). In this manner, the criteria and target ratings were independent and free from biases (35). To investigate the criterion-related validity of the TUG-ABS, individuals with stroke with the previously described characteristics and who had not participated in the previous phase, were recruited. All of the previously described procedures regarding demographic, clinical data collection, and TUG performances were followed. During the TUG performance, data collection was simultaneously obtained by the computerized motion analysis system and 3 video cameras (JVC®, GR-DVL 9800), which were synchronized.

The motion analysis system consisted of 4 camera units of the Optotak® system (Northern Digital Technology, Waterloo, ON, Canada) (44) and 3 AMTI® force plates (Advanced Mechanical Technologies, Watertown, MA, USA). An adjustable instrumented chair with 4 AMTI strain gauge transducers (MC3A-3-250, AMTI, Newton, MA, USA) was also used to record orthogonal forces under each thigh (49). The
AMTI® force plates were embedded in the 10-m walkway and data was acquired at 600 Hz. The seat height of the instrumented chair was adjusted for each individual’s leg length (12), and data were also collected at 600 Hz. The markers were placed on the feet, shins, thighs, pelvis, and trunk. Seventeen anatomical landmarks were also digitized with a 6-marker probe to precisely define the segments and the anatomical axes (44). The 3D coordinates were recorded at a sampling frequency of 60 Hz, as previously carried out (44) and recommended (40). After data collection, kinematic data were filtered with a 4th-order Butterworth zero-lag filter, with a cut-off frequency of 6 Hz, and the relative angles using a Cardanic (x–y–z) rotation sequence (44). The force plate data were filtered with a 4th-order Butterworth zero-lag filter with a cut-off frequency of 10 Hz, and were re-sampled at 60 Hz to match the kinematic data. An inverse dynamic approach was used to estimate the net joint moments and net powers (41, 44).

The video cameras had acquisition frequencies of 30 Hz and the recorded videos were processed and edited as previously described. Although the videos were recorded at 30 Hz, they were analysed in real time, without stopping or slowing speed motion. From a technical standpoint, any dynamic event happening faster than 83 ms could not be perceived by the human eye (50, 51). On the other hand, both the kinematic and kinetic data were sampled at 600 Hz. Therefore, a valid event was determined, by examiner 2, as a set of 5 or more frames (≥83.5 ms).

A total of 3–5 TUG trials were collected to ensure sufficient data for analyses. However, only one trial for each subject was selected, considering the variability in the TUG performances, which allowed the observation of all of the response categories for each item of the TUG-ABS.

The levels of absolute agreement between the data of the observational analyses and the motion analysis system for each item of the TUG-ABS were rated according to the unweighted kappa statistics (36), to investigate the absolute agreement for categorical polytomous data (α = 5%). If the levels of agreement were beyond those expected (36), to investigate the absolute agreement for categorical polytomous data (α = 5%). If the levels of agreement were beyond those expected by chance, and therefore reached significance levels, the kappa values were interpreted as previously described.

RESULTS

First phase: content validation of the TUG-ABS

The content validity of the preliminary version of the TUG-ABS (Table I) was judged by 8 selected experts, who had a mean career duration in the areas of biomechanics and rehabilitation of people with stroke of 13.4 years (standard deviation (SD) 5.6; range 7–22 years). Two-round analyses for the establishment of the content validity were performed by the experts, totalling a mean analysis time of 236 min (SD 109; range 120–420 min), with a total of 32 h of analysis time. Of the 24 items evaluated in the first round (Table I), 7 did not reach acceptable CVI values linked to the modified kappa-like index levels (< 0.72), and, therefore, were excluded (Tables II–V). The expert panel recommended the addition of 5 new items (Table I).

During the second round, two of the new items did not reach acceptable CVI values linked to the modified kappa-like index levels, and, therefore, were excluded (Tables II–V). All of the other 20 items reached acceptable values (> 0.72), and, therefore, were retained. In addition, consensus was established by the expert panel regarding their consistency with the conceptual definitions, representativeness, and relevance to the domain of interest, relevance to clinical interpretations, and clarity and comprehensiveness on the 20 items, with modified kappa-like index values ranging from 0.72 to 1.00 (Tables II–V). Furthermore, all of the experts evaluated the set of items for each activity and for the whole instrument as sufficient to represent the content (κ = 1.00).

<table>
<thead>
<tr>
<th>Measurement property</th>
<th>Statistics</th>
<th>Item A</th>
<th>Item B</th>
<th>Item C</th>
<th>Item D</th>
<th>Item E</th>
<th>Item Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content validity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency with conceptual definitions</td>
<td>CVI</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>κ</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Representativeness/ relevance to the domains</td>
<td>CVI</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.63</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>κ</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.52</td>
<td>0.72</td>
</tr>
<tr>
<td>Relevance to clinical interpretations</td>
<td>CVI</td>
<td>1.00</td>
<td>0.88</td>
<td>1.00</td>
<td>1.00</td>
<td>0.63</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>κ</td>
<td>1.00</td>
<td>0.88</td>
<td>1.00</td>
<td>1.00</td>
<td>0.52</td>
<td>0.72</td>
</tr>
<tr>
<td>Clarity and comprehensiveness</td>
<td>CVI</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>κ</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.72</td>
<td>1.00</td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-examiner 1</td>
<td>κ</td>
<td>0.67</td>
<td>0.87</td>
<td>0.95</td>
<td>0.68</td>
<td>–</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>–</td>
<td><0.01</td>
</tr>
<tr>
<td>Intra-examiner 2</td>
<td>κ</td>
<td>0.95</td>
<td>0.94</td>
<td>1.00</td>
<td>1.00</td>
<td>–</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>–</td>
<td><0.05</td>
</tr>
<tr>
<td>Inter-examiner first evaluation</td>
<td>κ</td>
<td>0.90</td>
<td>0.87</td>
<td>0.91</td>
<td>0.62</td>
<td>–</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>–</td>
<td>0.37</td>
</tr>
<tr>
<td>Inter-examiner second evaluation</td>
<td>κ</td>
<td>0.90</td>
<td>0.94</td>
<td>0.95</td>
<td>0.81</td>
<td>–</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>–</td>
<td>0.35</td>
</tr>
<tr>
<td>Criterion-related validity</td>
<td>κ</td>
<td>0.86</td>
<td>1.00</td>
<td>0.75</td>
<td>0.09</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.126*</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* p≥0.05.

**CVI values with modified kappa-like index < 0.72.

CVI: content validity index.
Second phase: intra- and inter-rater reliability of the TUG-ABS
A total of 22 individuals with stroke participated, 12 men and 10 women, mean age of 54.7 years (SD 15.4; range 26–80 years) and mean time since onset of stroke 52.2 months (SD 49.2; range 2–155 months). The examiners observed a mean of 4.8 video repetitions (SD 1.1; range 3–7 video repetitions) of the TUG trials in the first and 4.0 repetitions (SD 3.5; range 2–8 repetitions) in the second session, to score all the TUG-ABS items.

The majority of the items that reached acceptable content validity, showed acceptable inter- and intra-rater reliability, with
Development and validation of the TUG-ABS

kappa coefficient values ranging from 0.36 to 1.00 (p ≤ 0.04) (Tables II–V). Only two items (Tables II and V) did not show levels of agreement beyond those expected by chance and, therefore, were excluded.

Third phase: criterion-related validity of the TUG-ABS

Thirteen individuals with stroke participated, 6 men and 7 women, with a mean age of 63.4 years (SD 13.1; range 46–86 years) and a mean time since the onset of their stroke of 79.9 months (SD 32.7; range 44–160 months). The examiner observed a mean of 3.9 video repetitions (SD 0.6; range 3–5) of the TUG trials to score all the TUG-ABS items.

Item D of the sit-to-stand (κ = 0.09; p = 0.126) (Table II), H of gait (κ = 0.14; p = 0.053) (Table III), and E of the stand-to-sit (κ = 0.23; p = 0.097) (Table V) did not reach significant levels of agreement and, therefore, were excluded. All of the other 15 items showed acceptable absolute agreement values (0.29 ≤ κ ≤ 1.00; p ≤ 0.037) (Tables II–V).

Therefore, the final version of the TUG-ABS was established with a total of 15 items, 3 related to sit-to-stand, 5 related to gait, 4 related to turn, and 3 related to stand-to-sit (Appendix I).

DISCUSSION

After the systematic, clear, and objective processes of the development of the TUG-ABS, followed by the multi-step approach to investigate its psychometric properties, the final version of the instrument was established. The 15-item TUG-ABS proved valid and reliable for subjects with stroke. As pointed out by Benson & Clark (18), when the planning, construction, and content validation investigation of a new instrument are properly undertaken, the other steps related to its validation are easily accomplished, which were observed for the TUG-ABS.

For all the previously cited observational gait tools, content validation analyses were not reported (14, 15, 17). The confusion between content and face validities, and the previously unquantified nature of content validity, have led to misunderstandings of the importance of this psychometric property (52). As stated by Lynn (52), “Content validity, by its nature and definition, demands assessment rigor, and its assessment is critical”. In the present study, rigorous content validation processes were carried out and quantified, followed by statistical analyses. All of the items included in the final version of the TUG-ABS showed evidence of adequate content validity (28) for all investigated characteristics.

In addition, all of the items of the final TUG-ABS version showed kappa values greater than 0.40 and, therefore, were classified as moderate, good or very good levels of intra- and inter-rater reliability, where 66.7% were classified as good or very good (κ > 0.60). These values were greater than those reported by videotaped gait analysis studies, which reported intra- and inter-rater values of 0.45 ≤ κ ≤ 0.49 (53), κ = 0.19 (54), 0.30 ≤ κ ≤ 0.69 (38), and 0.29 ≤ κ ≤ 1.00 (37) and even, in some cases, the videos were slowed or stopped: 0.11 ≤ κ ≤ 0.52 (30) and 0.36 ≤ κ ≤ 0.74 (38).

Two previous reviews (15, 17) reported that studies investigating criterion-related validity using gold standard measures and employing adequate criteria, with valid and objective
categories, and appropriate statistical analyses were lacking. Those factors seriously compromised the justification of the use of these instruments. In the present study, concurrent criterion-related validity was established for all of the items included in the final version of the TUG-ABS. Of the 15 items, 14 (93.3%) showed absolute agreement values for concurrent criterion-validity, as classified as moderate, good or very good (κ ≥ 0.47). Only item B on the turn, showed fair agreement value. These values were similar to those reported by the only previous study that also investigated the concurrent criterion-validity at the item level for observational gait analyses that applied quantitative kinematic and kinetic data and kappa statistics for absolute agreements: 0.38 ≤ κ ≤ 0.94, which were considered as high validity values (37).

Despite the positive results of the present study, some limitations should be considered. First of all, it is possible that some important variables regarding the biomechanical strategies of the TUG performances of subjects with stroke were not included in the TUG-ABS, despite the rigorous processes involved in the planning and development of the instrument, as well as the positive results observed in its content validation. Therefore, more investigations and clinical applications of this tool are necessary to determine if the selected variables are adequate to allow a comprehensive evaluation of the biomechanical strategies of subjects with stroke. Another limitation was the use of videos of the subjects’ TUG performances, which was used to limit the bias in scoring the TUG-ABS, consistent with the methodological rigour of this study. As a clinically-oriented instrument, it is necessary that future studies determine if video analyses scores of the TUG-ABS are similar to those with real time observations.

Finally, the present results are restricted to the characteristics of the selected subjects, which were determined to guarantee a wide range and the most evenly spread of variability, or heterogeneity in their TUG performances. Therefore, future studies, with larger samples, should be conducted for the investigation of the generalizability of the TUG-ABS, with various populations of subjects with stroke. The validation of a newly developed instrument is an on-going process and requires numerous research efforts, which should be achieved by complementary studies (18, 35, 55).

In conclusion, the final developed 15-item TUG-ABS version proved to be valid and reliable for individuals with stroke, but still needs to be clinically validated, before being used for clinical applications and research purposes.

ACKNOWLEDGEMENTS

Financial support was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Graduate Student’s Exchange Program (Government of Canada), Student Dissertation Award of the International Society of Biomechanics (ISB), the Canadian Institutes of Health Research (CIHR) and REPAR. S. Nadeau is a senior researcher supported by Fonds de la Recherche en Santé du Québec. The authors are also grateful to Dr. John Henry Salmela for copy-editing the manuscript, and to Cyril Duclos, Pierre Desjardins, Daniel Marineau, Michel Goyette, Fernando de Aguiar Faria and Abraão Marques Tavares for their technical support.

The authors are also grateful to Dr. John Henry Salmela and Dr. Louise Ada for copy-editing the manuscript.

REFERENCES

obtained with the Modified Ashworth Scale in the lower extremities of people with stroke. Phys Ther 2002; 82: 25–34.

23. Faria CDCM, Teixeira-Salmela LF, Nadeau S. Predicting levels of basic functional mobility, as assessed by the Timed “Up and Go” test, for individuals with stroke: discriminant analysis. Disabil Rehabil 2013; 35: 146–152.

APPENDIX I. Final version of the Timed “Up and Go” Assessment of Biomechanical Strategies tool

| Name:__ Date:____________ |
| Chair specifications:______________________ Orthoses / Walking Aids: _____________________________ |

SIT-TO-STAND

A. Supporting the upper limb(s) with lateral trunk flexion and/or trunk rotation:
- () without support OR
- () with support and moderate trunk movement
- () with support and excessive trunk movement

B. Number of attempts to perform sit-to-stand and bringing the pelvis to the edge of the seat:
- () 1
- () > 1

C. Momentum generated by the first trunk flexion and extension of the trunk and lower limbs:
- () enough momentum for thighs-off and movements are continuous
- () enough momentum for thighs-off and movements are NOT continuous
- () not enough momentum for thighs-off movements are continuous

GAIT

A. Step symmetry and length (most steps):
- () symmetrical and adequate length
- () asymmetrical and adequate length on one side
- () asymmetrical OR symmetrical and inadequate length on both sides

B. Initial contact with the heel (most steps):
- () on both feet
- () on one foot
- () on neither feet

C. Hip extension during stance so that the thigh is posterior to the pelvis (most steps):
- () with both legs
- () with one leg
- () with neither leg

D. Foot clearance during swing phase (most steps):
- () with both feet
- () with one leg
- () with neither foot

E. Forward progression of the leg with atypical trunk movements (most steps):
- () with both legs and atypical trunk movements
- () with both legs and atypical trunk movements

TURN

A. Step length between the outer and inner foot during the turn:
- () whole outer foot is ahead of inner foot
- () part of outer foot is ahead of inner foot
- () whole outer foot is beside/behind inner foot

B. Number of steps during the turn:
- () < 4
- () 4-5
- () > 5

C. Body rotations to accomplish the opposite direction during the turn:
- () < 3
- () 3
- () > 3

D. Sequencing of gait, turning, and gait:
- () movements are continuous and no loss of balance
- () movements are NOT continuous and no loss of balance
- () movements are NOT continuous and some loss of balance

STAND-TO-SIT

A. Sequencing of gait, turning to sit, and stand-to-sit:
- () movements are continuous
- () movements are mostly continuous
- () movements are NOT continuous

B. Sequencing and control of thighs down and trunk back:
- () movements are continuous and good control of movements
- () movements are NOT continuous and good control of movements
- () movements are NOT continuous and poor control of movements

C. Parallel legs and knee flexion during stand-to-sit:
- () legs parallel and both knees flexion ≥ 90°
- () legs NOT parallel and both knees flexion ≥ 90°
- () knee flexion< 90° (one or both knees)

3 points for each category
2 points for each category
1 point for each category

Best performance

Worst performance

Total score:_____/45