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Objective: This exploratory study investigated to 
what extent gait characteristics and clinical physical 
therapy assessments predict falls in chronic stroke 
survivors.
Design: Prospective study.
Subjects: Chronic fall-prone and non-fall-prone stro-
ke survivors.
Methods: Steady-state gait characteristics were col-
lected from 40 participants while walking on a tread-
mill with motion capture of spatio-temporal, variabi-
lity, and stability measures. An accelerometer was 
used to collect daily-life gait characteristics during 
7 days. Six physical and psychological assessments 
were administered. Fall events were determined 
using a “fall calendar” and monthly phone calls over 
a 6-month period. After data reduction through prin-
cipal component analysis, the predictive capacity of 
each method was determined by logistic regression.
Results: Thirty-eight percent of the participants 
were classified as fallers. Laboratory-based and dai-
ly-life gait characteristics predicted falls acceptably 
well, with an area under the curve of, 0.73 and 0.72, 
respectively, while fall predictions from clinical as-
sessments were limited (0.64). 
Conclusion: Independent of the type of gait as-
sessment, qualitative gait characteristics are better 
fall predictors than clinical assessments. Clinicians 
should therefore consider gait analyses as an alter-
native for identifying fall-prone stroke survivors. 
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ke; gait; fall prediction; accelerometry.
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Falls are common among chronic stroke survivors 
(1, 2) and can lead to injuries (3, 4). Predicting 

falls may help in assigning stroke survivors to fall 
prevention interventions, and may aid in the develop-
ment of tailored fall prevention. Clinically, physical 
performance tests have been used to assess fall risk 
in stroke survivors (5–8). While some studies have 
reported that these tests were associated with falls (7, 
8) other studies did not confirm such an association 
(5, 9). In addition, several studies attempted to predict 

falls based on psychological factors, such as depression 
(2, 5). Again, some studies did (2), while others did 
not (5), find an association between depression and 
falls in stroke survivors. Since most falls occur during 
dynamic activities, such as walking or transfers (1, 5), 
and current fall risk assessments lack consistency, it 
has been suggested to explore gait characteristics in 
relation to fall risk in stroke survivors (10). 

Interestingly, in healthy older adults several studies 
were successful in predicting falls by estimating gait 
characteristics in a laboratory setting (11, 12). In ad-
dition, several studies were able to predict falls based 
on gait characteristics determined from daily-life ac-
celerometry (13, 14). Despite the different approaches 
in estimating gait characteristics, both methods de-
monstrated that gait characteristics, such as gait speed 
(12), variability in gait (11, 13) and local divergence 
exponents (LDE) (11, 13) of gait kinematics predict 
falls in healthy older adults. 

Gait characteristics in stroke survivors differ from 
those in healthy older adults. For instance, gait speed 
is reduced, and gait is more asymmetrical (15) in 
stroke survivors. Nevertheless, gait characteristics of 
stroke survivors have also been shown to predict falls 
(16). Moreover, with regard to gait stability, it has 
been shown that the local divergence exponent (LDE) 
was larger in stroke survivors than in age-matched 
healthy peers (17), indicating less stable gait. Still, 
stroke survivors had equal margins of stability (MoS) 
(17) probably accomplished by a larger step width 
(18). Although there are profound differences in gait 
between stroke survivors and healthy older adults, a 
recent study indicated that the same gait characteristics 
measured in daily-life are related with fall history in 
stroke survivors (19). However, this study also found 
that several gait characteristics had different associa-
tions with fall history than in healthy older adults (19). 

It is currently unknown whether gait characteristics 
yield better fall predictions than current clinical assess-
ments in stroke survivors. It is also not known which 
method of gait characteristic estimation, i.e. from 
daily-life or laboratory measurements, yields the most 
meaningful information regarding fall predictions, or 
whether these 2 methods are even complementary 
in this regard. Therefore, the aim of this exploratory 
study was 2-fold. Firstly, we examined whether gait 
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characteristics predict fall incidences in chronic stroke 
survivors better than current clinical assessments. Se-
condly, we examined how well both gait characteristic 
estimation methods predict falls and if a combination 
of both gait characteristic estimations yield better 
predictions of falls. 

METHODS

Participants

Stroke survivors were recruited via flyers in hospitals, general 
practitioners and physical therapy practices and through various 
national peer-group meetings in the Netherlands. Inclusion cri-
teria were: patients with self-reported stroke who were at least 
6 months post-stroke, were living independently in the com-
munity, and were older than 18 years. Exclusion criteria were: 
stroke survivors who were institutionalized in, for instance, a 
nursing home, if they had a functional ambulation category 
(FAC) of 2 or less (20), a Mini-Mental State Examination 
(MMSE) of 24 or lower (21) and or severe cardiovascular, 
respiratory, musculoskeletal or neurological disorder other than 
stroke that affected gait performance. The research protocol 
(NL49126.028.14) was approved by the medical ethics com-
mittees of “Noord Brabant”, The Netherlands. All participants 
signed informed consent prior to testing, and treatment of the 
participants was according to Good Clinical Practice.

Measurement protocol

Twenty-four hours prior to clinical and laboratory testing, 
participants were asked not to drink any alcoholic beverages 
and to avoid any other activities that could affect physical and 
psychological performance during testing. All measurements 
were performed during a single visit to the rehabilitation centre 
Revant, Breda, the Netherlands. Depending on the number and 
length of the breaks that a participant needed, the measurement 
protocol took from 2 to 3.5 h. Demographic and stroke-specific 
characteristics were obtained including: sex, age, body length and 
weight, time since stroke, hemiparetic side, daily use of a walking 
aid for inside and/or outside use and use of prescribed medication. 

Clinical assessments 

Participants were asked to perform several physical performance 
assessments and questionnaires commonly used in rehabilitation 
practice. First, over -ground preferred gait speed was assessed 
with a 10-m walk test (10MWT, performed twice and mean 
was calculated) (22). Secondly, the ability to make a transfer 
was measured (in s) by the Timed Up and Go (TUG) test (23), 
the test was repeated 3 times and mean was calculated. Thirdly, 
static and dynamic balance was measured with the 14-item Berg 
Balance Scale (BBS) (24). In addition, the 30-item Yesavage 
Geriatric Depression Scale (GDS) (25), the Fall Efficacy Scale 
(FES) (26) and the Longitudinal Aging Study Amsterdam ques-
tionnaire (LASA, a questionnaire aimed to identify subgroups 
with highest fall risk) (27) were administered. See Table II for 
an overview of all physical and psychological assessments. 

Laboratory gait assessment

Laboratory-based gait analysis was conducted using a Gait 
Real-time Analysis Interactive Lab (GRAIL; Motekforce Link 

bv, Amsterdam, the Netherlands). The GRAIL consists of a 
dual-belt treadmill with 2 embedded force platforms (Motek-
force Link b.v.), a motion-capture system (Vicon, Vicon Motion 
Systems, Oxford, UK) with 10 infrared cameras (Bonita B10, 
Vicon Motion Systems) and synchronized virtual environments. 
Time series of ground reaction forces were sampled at 1,000 
samples/s and the infrared cameras were sampled, synchronized 
at a frame rate of 100 samples/s, both using Vicon Nexus Soft-
ware 1.8.5. The GRAIL was controlled by a custom-designed 
application in D-flow (Motekforce Link b.v.). 

Each participant wore black, tight-fitting, clothes provided 
by the researcher and any jewellery was removed. Forty-seven 
reflective passive markers (15 mm) (28) were placed on anato-
mical points. Markers were placed by the same investigator to 
maximize consistency between participants.

During treadmill testing, participants wore a safety harness at 
all times. This harness was attached to the ceiling and prevented 
falls, while participants were still able to move freely on the 
treadmill. Participants walked without the use of a walking aid, 
except for an ankle-foot orthosis or orthopaedic shoes. After 
familiarization with the treadmill steady state, gait characteris-
tics were obtained at preferred gait speed. Preferred gait speed 
was determined by slowly increasing the treadmill speed until 
the participant reported a comfortable gait speed. If necessary, 
participants were allowed to hold on to the handrail for the first 
minute. As soon as handrail support was no longer needed and 
participants were familiarized with the treadmill, data recording 
started. A minimum of 60 consecutive strides was recorded and 
used for further analysis. 

The gait data were recorded in Vicon Nexus and transferred 
to Matlab 2013B (The MathWorks Inc., Natick, MA, USA) to 
extract gait characteristics. The gait events foot contact (FC) and 
foot off (FO) were determined using the centre of pressure (CoP) 
(29). Briefly, force-plate data were first converted to centre-of-
pressure data, i.e. time series of the point of application of the 
resultant ground reaction force, which shows a characteristic 
butterfly pattern over time. FC and FO were then detected from 
this profile using peak detection. The left and right upper angles 
of the butterfly corresponded with right and left FO respectively 
and the left and right lower angles of the butterfly corresponded 
with the left and right FC.

All steady-state gait characteristics during preferred gait speed 
were determined over 60 consecutive strides. Spatio-temporal 
gait characteristics included gait speed, stride time, step width, 
paretic and non-paretic step length, and step time.

Spatio-temporal gait symmetry index (SI) was deter-
mined based on difference in step length and step time 
between paretic and non-paretic limb using equation 1.  

where PL is the step length/time of the paretic limb and NPL 
is the step length/time of the non-paretic limb, determined and 
averaged over i till n strides. An SI deviating from 1 reflects a 
more asymmetrical gait. 

Gait smoothness was based on the velocity time series of the 3 
averaged sacrum markers. Subsequently, the index of harmonicity 
(IH) was determined by dividing the power of the spectral ana-
lysis of the ground frequency by the power of the sum of the first 
6 harmonics (30). Variability of gait was determined by calcula-
ting the standard deviation (SD) of stride time and of step time 
and step length for the paretic and non-paretic limb separately. 

Two types of gait stability characteristics were determined. 
First, local dynamic stability, expressed as the local divergence 
exponent (LDE) was calculated from the velocity time series 

Σn
i=0

PLi – NPLi
PLi + NPLi

(1) Symmertry Index (SI) = 1–1/n (        )

J Rehabil Med 49, 2017
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in both groups mean and SDs were determined. We used an 
independent sample t-test or Mann-Whitney or χ2 test to examine 
differences in participant demographics. 

Fall status (NF/F) was used as independent variable in our 
logistic regression models, gait characteristics and clinical 
measures were used as independent variables. To facilitate 
comparison of the results of univariate logistic regressions 
between variables, we first z-transformed all continuous va-
riables. Subsequently, to determine the predictive capacity of 
clinical assessments and gait characteristics, univariate logistic 
regression was performed for each potential predictor variable. 
The resulting odds ratio (OR) for each independent variable 
represents the increased fall risk per unit SD increase. ORs 
higher than one indicate an increased fall risk. 

Predicting falls

We created 4 fall-prediction models, which were based on: (i) 
clinical physical and psychological assessments; (ii) laboratory-
derived steady-state gait characteristics; (iii) accelerometry 
derived daily-life gait characteristics; and (iv) accelerometry 
and laboratory derived gait characteristics. 

To reduce the number of independent variables and avoid 
the risk of multicollinearity we created new latent variables 
by performing a principal component analyses (PCA). PCA 
reduces high dimensional data to new uncorrelated latent 
variables (PCs) such that variance explained by the PCs is 
maximized (36). PCs were entered in the logistic regression 
if the PC discriminated between both groups with a p-value 
≤ 0.05 based on an independent sample t-test. All independent 
variables that were significantly associated with fall risk were 
per prediction model entered into the PCA and loading factors 
per independent variable and per model for PC1 are reported. 
We conducted the PCA and the logistic regression modelling 
within a 10-fold cross-validation method, thereby taking into 
account the variability caused by performing the component 
analysis on different training sets on the robustness of the final 
model. The loading factor of each independent variable on 
the first principal component was averaged over the 10 folds. 
Validated model performances are reflected by the error rate (1- 
accuracy), sensitivity, specificity and the area under the receiver 
operating curve (AUC). Prediction models were compared by 
determining the confidence intervals (CI) off the AUC using a 
previous described method (37). 

All statistical analyses were performed using Matlab 2013B 
(The MathWorks Inc.). Statistical significance was established 
a priori at a level of p-value ≤ 0.05. As this is an explorative 
study aimed at discovering the most promising fall prediction 
models, we did not correct for multiple comparisons. 

RESULTS

A total of 47 stroke survivors participated in the study. 
After testing 5 participants were excluded due to their 
inability to walk without the use of the handrail during 
the laboratory gait assessment. One participant was 
excluded from the analysis due to a technical failure of 
the accelerometer and one participant refused to wear 
the accelerometer. To avoid potential bias of having dif-
ferent participants for different independent variables, 
only the 40 stroke survivors that performed all tests 

of the averaged 3 sacrum markers. Time series were time nor-
malized towards, on average, 100 samples per stride, so that 
time-normalized time-series had a length of 6,000 samples. 
Each time-normalized time series was reconstructed in a 5 
dimensional state space by using a fixed delay of 10 samples. 
See for a more detailed explanation Bruijn et al. (31). Finally, 
the maximum local divergence exponent was determined for 
the rate of divergence from 0–1 step (31). Second margins of 
stability (MoS) were estimated by estimating the centre of mass 
(CoM) using a 14-body segment model (32). In short, CoM 
location and mass of each segment were estimated based on 
sex and body segment circumferences as well as length of the 
segments (32). The extrapolated centre of mass (XCoM) was 
determined by the CoM plus the velocity of the centre of mass 
times the Eigenfrequency of a pendulum with limb length as 
length (33). To determine the MoS in both medio-lateral (ML) 
and anterior-posterior (AP) directions, the marker position of 
the lateral malleolus in ML and the toe marker in AP direction 
at FC were subtracted from the XCoM in ML and AP direction 
respectively. See Table III for an overview of steady-state gait 
characteristics.

Daily life gait characteristics

The day after the laboratory tests, all participants started wearing 
a tri-axial accelerometer (McRoberts, The Hague, the Nether-
lands) for a period of 7 consecutive days. The accelerometer 
was located at the lower back so as to collect information from 
both limbs. Previous studies have clearly indicated that this loca-
tion provides valuable information regarding fall risk (13, 14). 
The accelerometer measured at a sample rate of 100 samples/s 
and was aligned in the vertical (VT), ML and AP direction. 
The data were analysed with a gait recognition algorithm (34). 
The algorithm searched each second for gait activity with a 
minimum length of 8 s or a multiple of 8 s. Gait characteristics 
were estimated for each 8-s walking bout, longer walking bouts 
were subdivided into multiple 8-s parts. Subsequently for each 
characteristic the median value of all bouts was taken to reduce 
the influence of outliers, further data analysis was similar to 
earlier studies by our research group (13). We determined daily 
life gait characteristics that have been shown to be promising 
in regard to predicting falls in healthy older adults (13) and or 
in stroke survivors (19). See Table IV for an overview of the 
daily-life gait characteristics.

Fall status

Falls were determined prospectively using a “fall calendar” and 
monthly telephone calls over a 6-month period, which is suf-
ficiently long to identify recurrent fallers (7). Participants were 
asked to report any falls and related (medical) consequences and 
circumstances on the calendar. During the monthly telephone 
calls the researcher decided whether reported falls matched the 
following definition: “any unanticipated event that results in 
participants coming to the ground, floor or lower level” (35). 
We excluded falls that had a clearly different cause than a loss 
of balance, such as fainting or an epileptic seizure. 

Statistical analysis

Participants who experienced no falls during the 6-month 
follow-up were classified as non-fall-prone stroke survivors 
(NF), the participants who experienced at least one fall were 
classified as fall-prone stroke survivors (F). For each variable 

www.medicaljournals.se/jrm
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were included in all further analyses. During 6 months 
follow-up, 15 (38%) stroke survivors experienced at 
least one fall and were classified as fall-prone stroke 
survivors (F). All reported falls were due to a loss of 
balance, no falls were excluded. The remaining 25 
(62%) stroke survivors were classified as not-fall-prone 
stroke survivors (NF). Between-group demographics 
and stroke-specific characteristics results are presented 
in Table I. χ2 test revealed a statistically significant 
difference in using a walking aid, where a greater 
percentage of the F used a walking aid. 

For clinical assessments, laboratory-based steady-
state gait characteristics and daily-life gait characte-
ristics means and SDs are reported per group, respec-
tively, in Tables II, III and IV. In addition, predictive 
capacity of each independent variable, expressed as 
odds ratio (OR) determined by univariate logistic 
regression, is reported in Tables II, III and IV.

Of the clinical assessments, LASA was able to pre-
dict falls as indicated by a significant OR (Table II). Of 
the laboratory-based steady-state gait characteristics, 
smaller step length for the paretic and non-paretic limb, 
lower preferred gait speed and lower gait smoothness 

Table I. Demographic and stroke-specific characteristics

Non-fallers 
(n = 25)

Fallers 
(n = 15) p-value

Age, years, mean (SD) 58.4 (14.3) 64.6 (8.5) 0.09
Sex (female/male), n 14/11 10/5 0.33
Time since stroke, months, mean (SD) 71.8 (65) 113 (109) 0.11
Hemiparetic side (right/left), n 16/9 10/5 0.98
Number of strokes >1, n 3 0 0.49
Weight, kg, mean (SD) 88.0 (17.4) 79.2 (17.2) 0.13
Length, cm, mean (SD) 173.8 (10.8) 171.8 (9.9) 0.55
BMI, kg/m2, mean (SD) 29.1 (5.5) 26.7 (5.5) 0.19
Use of walking aid (no/yes), n 17/8 3/13 < 0.01
Use of medicines (no/yes), n 2/23 2/13 1
MMSE (max 30), mean (SD) 27.7 (2.8) 27.5 (2.2) 0.78

p-values are based on independent samples t-test, Mann–Whitney U test or χ2 
tests. Significant differences are shown in bold. 
BMI: body mass index; MMSE: Mini-Mental State Examination; SD: standard 
deviation.

Table II. Clinical assessments: physical performance and 
psychological tests 

Non-fallers 
(n = 25)
Mean (SD)

Fallers 
(n = 15)
Mean (SD) OR (95% CI) p-value

BBS 50.2 (8.0) 47.5 (5.9) 0.69 (0.35–1.33) 0.27
TUGT, s 10.9 (6.9) 15.3 (6.8) 1.92 (0.97–3.79) 0.06
10MWT, s 10.4 (4.8) 14.9 (7.6) 2.28 (0.94–5.18) 0.07
GDS 8.4 (5.8) 10.1 (7.4) 1.02 (0.93–1.12) 0.56
LASA 4.4 (3.6) 6.7 (4.1) 1.23 (1.03–1.46) 0.02
FES 29.6 (10.8) 32.7 (10.8) 1.02 (0.9 –1.09) 0.36

OR and p-values are based on univariate logistic regression. TUGT, 10MWT 
and BBS variables are z-transformed. Significant differences are shown in 
bold. OR: odds ratio; CI: confidence interval; BBS: Berg Balance Scale; TUGT: 
Time Up and Go Test; GDS: Yesavage Geriatric Depression Scale; LASA: 
Longitudinal Aging Study Amsterdam questionnaire; FES: Fall Efficacy Scale; 
10MWT: 10-m walk test.

Table III. Laboratory-based steady-state gait characteristics

Non-fallers (n = 25)
Mean (SD)

Fallers (n = 15)
Mean (SD) OR (95% CI) p-value

Spatio-temporal gait characteristics
Step length PL, mm 474 (116) 369 (119) 0.30 (0.11–0.78) 0.01
Step length NPL, mm 450 (127) 316 (142) 0.27 (0.10–0.72) < 0.01
Step time PL, s 0.58 (0.08) 0.58 (0.05) 1.07 (0.53–2.16) 0.85
Step time NPL, s 0.65 (0.12) 0.72 (0.17) 1.81 (0.87–3.81) 0.11
Gait speed, m/s 0.74 (0.27) 0.58 (0.22) 0.37 (0.15–0.91) 0.03
Stride time, s 1.23 (0.19) 1.29 (0.20) 1.62 (0.79–3.30) 0.18
Step width, mm 155 (41) 170 (55) 1.41 (0.70–2.82) 0.33

Symmetry gait characteristics
Step length SI 0.91 (0.09) 0.77 (0.25) 0.28 (0.07–1.07) 0.06
Step time SI 0.85 (0.16) 0.76 (0.21) 0.59 (0.29–1.22) 0.15

Smoothness gait characteristics
IH VT 0.78 (0.20) 0.57 (0.31) 0.38 (0.17–0.85) 0.02
IH ML 0.93 (0.06) 0.95 (0.02) 1.89 (0.70–5.13) 0.21
IH AP 0.84 (0.16) 0.67 (0.29) 0.43 (0.19–0.97) 0.04

Variability gait characteristics
Stride time 4.49 (2.56) 7.46 (5.52) 3.08 (1.05–8.99) 0.04
Step length PL 32.4 (11.1) 45.0 (22.4) 3.76 (1.14–12.41) 0.03
Step length NPL 35.1 (13.4) 40.7 (18.4) 1.52 (0.76–3.11) 0.23
Step time PL 21.3 (7.94) 23.7 (7.4) 1.47 (0.74–2.94) 0.27
Step time NPL 21.6 (7.2) 23.1 (4.5) 1.48 (0.73–2.99) 0.28
Step-width 22.3 (7.6) 23.7 (6.6) 1.31 (0.66–2.58) 0.44

Stability gait characteristics
LDE VT 1.57 (0.25) 1.61 (0.25) 1.17 (0.58–2.37) 0.65
LDE ML 1.62 (0.24) 1.89 (0.32) 3.46 (1.31–9.12) 0.01
LDE AP 2.04 (0.30) 2.21 (0.33) 1.92 (0.93–3.98) 0.07
Margin of Stability ML PL 0.18 (0.04) 0.19 (0.04) 1.94 (0.90–4.16) 0.09
Margin of Stability AP PL –0.44 (0.08) –0.38 (0.07) 2.56 (1.07–6.12) 0.03
Margin of Stability ML NPL 0.18 (0.02) 0.19 (0.03) 1.56 (0.76–3.23) 0.22
Margin of Stability AP NPL –0.44 (0.08) –0.37 (0.07) 2.74 (1.13–6.69) 0.02

Odd ratio (OR) and p-values are based on univariate logistic regression. All variables are z-transformed. Significant differences are printed in bold. (N)PL: (non)-
paretic limb; SI: symmetry index, IH: index of harmonicity: OR: odds ratio; CI: confidence interval; LDE: local divergence exponent, VT: vertical, ML: medio-
lateral; AP: anterior-posterior direction.

J Rehabil Med 49, 2017
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factors of all independent variables on PC1 for models 
2, 3 and 4 are presented in Fig. 1. Fall predictions abi-
lity for all 4 models are presented in Table V. Model 
1, based on clinical assessments, yielded a limited 
ability in predicting falls, with an AUC of 0.64 and 
a lower CI below 0.5. Prediction models 2, 3 and 4, 

(IH) in VT and AP direction increased the odds of 
becoming a faller (Table III). Furthermore, a larger 
stride time variability and step length variability of 
the paretic limb increased the odds of becoming a fal-
ler. A larger LDE, indicating a lower local dynamic 
stability, and smaller MoS in AP direction increased 
the odds of becoming a faller. Several daily-life gait 
characteristics were significantly associated with falls. 
A lower gait speed, smaller SD in VT and AP direction 
of the acceleration signal and lower harmonic ratio 
(HR) in AP direction increased the odds of becoming 
a faller. Furthermore, a larger IH in ML direction and 
a larger amplitude of the power of the dominant peak 
in the ML direction increased the odds of becoming a 
faller (Table IV). 

Independent sample t-tests revealed that, for all 
4 created fall prediction models, only PC1 was sig-
nificantly different between groups. The explained 
variance by PC1 ranged from 53.8% for model 4 up 
to 71.1% explained variance for model 2. The loading 

Table IV. Daily life gait characteristics

Non-fallers 
(n = 25)
Mean (SD)

Fallers  
(n = 15)
Mean (SD) OR (95%CI) p-value

Gait speed, m/s 0.73 (0.16) 0.62 (0.12) 0.32 (0.13–0.79) 0.01
Stride time, s 1.34 (0.31) 1.42 (0.45) 1.27 (0.66–2.46) 0.47
SD VT 1.63 (0.52) 1.23 (0.39) 0.23 (0.08–0.69) 0.01
SD ML 1.37 (0.27) 1.22 (0.27) 0.49 (0.24–1.02) 0.06
SD AP 1.38 (0.33) 1.16 (0.23) 0.36 (0.16–0.84) 0.02
HR VT 1.25 (0.24) 1.13 (0.26) 0.53 (0.25–1.15) 0.10
HR ML 1.33 (0.17) 1.39 (0.21) 1.41 (0.74–2.71) 0.29
HR AP 1.13 (0.19) 1.00 (0.19) 0.40 (0.18–0.90) 0.02
IH VT 0.44 (0.17) 0.36 (0.17) 0.55 (0.27–1.11) 0.09
IH ML 0.42 (0.20) 0.57 (0.26) 1.99 (1.02–3.92) 0.04
IH AP 0.51 (0.11) 0.53 (0.17) 1.16 (0.63–2.13) 0.63
Amplitude (psd) VT 0.45 (0.12) 0.41 (0.11) 0.68 (0.36–1.29) 0.24
Amplitude (psd) ML 0.44 (0.16) 0.57 (0.24) 1.92 (1.01–3.75) 0.05
Amplitude (psd) AP 0.43 (0.14) 0.52 (0.20) 1.71 (0.88–3.34) 0.11
Width (psd) VT 1.0 (0.13) 1.07 (0.18) 1.75 (0.82–3.75) 0.15
Width (psd) ML 0.95 (0.02) 0.95 (0.04) 1.08 (0.57–2.05) 0.84
Width (psd) AP 0.95 (0.02) 0.95 (0.02) 1.16 (0.61–2.21) 0.66
LDE/stride VT 1.06 (0.38) 1.11 (0.39) 1.17 (0.62–2.20) 0.62
LDE/stride ML 0.94 (0.31) 1.01 (0.37) 1.24 (0.65–2.35) 0.51
LDE/stride AP 1.01 (0.65) 1.02 (0.39) 1.03 (0.55–1.93) 0.91

Odd ratio (OR) and p-values are based on univariate logistic regression. All 
continuous variables are z-transformed. Significant differences are printed in 
bold. SD: standard deviation; OR: odds ratio; CI: confidence interval; HR: 
harmonic ratio; IH: index of harmonicity; VT: vertical; ML: medio-lateral; 
AP: anterior-posterior direction; PSD: power spectral density; LDE: local 
divergence exponent.

Table V. Model performances

Model 1 Model 2 Model 3 Model 4

Sensitivity 0.62 0.85 0.80 0.80
Specificity 0.66 0.65 0.65 0.66
AUC (95% CI) 0.64  

(0.46–0.82)
0.73  
(0.57–0.89)

0.72  
(0.56 –0.88)

0.73  
(0.57–0.89)

Error rate 0.32 0.28 0.28 0.28

Model 1 is based on clinical assessments, model 2 on laboratory-based gait 
characteristics, Model 3 on daily-life gait characteristics and model 4 combines 
gait characteristics from models 2 and 3. 
CI: confidence intervals; AUC: Area under the curve.

Fig. 1. Loading factors for prediction models 2, 3 and 4. SL: step length; PL: paretic limb; NPL: non-paretic limb; IH: index of harmonicity; ST: 
stride time; var: variability; LDE: local divergence exponent; MoS FW: forward margin of stability; SD: standard deviation; HR: harmonic ratio; 
Amp.: amplitude.
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407Gait characteristics predict falls in stroke

based on respectively laboratory-based steady-state 
gait characteristics, daily-life gait characteristics and 
a combination of both gait assessment methods, were 
able to predict falls, with AUC ranging between 0.72 
and 0.73 and a lower CI above 0.5.

DISCUSSION

The main objective of the current study was to exa-
mine whether gait characteristics might improve fall 
predictions over current clinical assessments. We used 
2 common methods of assessing gait characteristics, 
namely a standardized laboratory gait assessment and 
a daily-life gait assessment. In addition, we examined 
whether a combination of both methods yielded better 
predictions.

Of the clinical assessments tests, neither the physical 
performance tests nor the questionnaires were able 
to predict falls. The exception being the LASA ques-
tionnaire, which did predict falls (27), which might be 
explained by the fact that LASA includes retrospective 
fall history in the final sum score while the other tests 
did not. Our results for the clinical assessments are in 
line with several other studies (5, 9) but not all (2, 7, 8). 

Our results for model 2 show that laboratory-based 
steady-state gait characteristics can predict falls, as 
was expected based on studies in healthy older adults 
(11). Daily-life gait characteristics (model 3) predicted 
prospective falls as well as laboratory-based charac-
teristics, which is also in line with earlier results in 
healthy older adults (13) and stroke survivors (19). 

Furthermore, despite a different methodological 
approach, both gait assessment methods (model 2 
and model 3) were equally well able to discriminate 
between NF and F. Apparently, the disadvantages of 
daily-life gait assessment, such as more vulnerability to 
environmental circumstances and walking behaviour, 
are compensated by a longer assessment time, and/
or the more ecologically valid data. A combination 
of laboratory and daily-life gait assessments (model 
4) did not result in a significantly more accurate fall 
prediction model. Therefore, to identify fall-prone 
stroke survivors, one can choose between both gait 
assessment methods. Moreover, both gait assessments 
methods were able to predict prospective falls (lower 
CI above 0.5), while prediction performances by 
the conventional clinical assessments was limited in 
predicting falls (lower CI below 0.5). Thus, gait as-
sessment can be considered as a better alternative to 
identify stroke survivors at risk for falling. In addition, 
to the best of our knowledge, this was the first study 
comparing clinical assessments and gait characteristics 
in the same sample of participants, which is the most 
objective comparison. For practical relevance, it is 

important to note that the gait characteristics signifi-
cantly associated with falls are determined with just 4 
markers located on the pelvic and one marker on each 
foot, rather than the 47 markers used in this experiment. 
Moreover, wearing the accelerometer was considered 
as a relatively easy task by the participants, making 
both methods applicable for practical use. Furthermore, 
considering the increasing availability of sensors in, 
for instance, smart-phones and thereby relatively low 
costs of applying such analysis it is worth further 
investigation.

While we expected to find gait characteristics that 
were associated with falls (11, 14), at present it was 
unknown to what extent the margins of stability (MoS) 
in the ML direction were associated with falls in stroke 
survivors. Although maintaining MoS in ML direction 
is critical with respect to maintaining gait stability 
(33) and is therefore essential in fall prevention during 
gait, no differences were found between groups. This 
supports the finding that stroke survivors are able to 
maintain MoS in ML direction (17, 38), probably 
accomplished by increasing the step width (18, 38). 
While MoS may not be an interesting gait characteristic 
for identifying F during steady-state gait, perhaps this 
may be different when gait is perturbed and an adequate 
reaction is required in order to maintain the MoS. 

Study limitations

The inclusion and exclusion criteria were aimed at 
including all ambulatory walkers who had had a stroke. 
Of the participants that met our inclusion criteria, 5 par-
ticipants were not able to perform the steady-state gait 
assessment without the use of the handrail and were 
excluded from our analysis. Therefore, our sample of 
stroke survivors is, to some extent, biased towards the 
higher functioning stroke survivors and will not reflect 
all ambulatory walking stroke survivors. 

Fall incidences were captured over a 6-month period. 
Although 6 months appear to be sufficient to identify 
recurrent fallers (7), the extent to which seasonal 
influences have affected fall incidences is unknown, 
and could have affected our classification of groups.

Our sample of stroke survivors was relatively 
small, which may have affected the stability of our 
PCA, especially for model 4, containing 16 gait cha-
racteristics. On the other hand, PCA was part of our 
cross-validation procedure and error rates between 
models 2, 3 and 4 are similar, indicating similar stable 
PC determinations in model 4 as in models 2 and 3. 
Nevertheless, the present findings need replication in 
larger cohorts. Also, due to the explorative nature of the 
study, we did not apply a correction for multiple com-
parison, which increases the chance of a type 1 error.

J Rehabil Med 49, 2017
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408 M. Punt et al.

We explored the value of gait characteristics relative 
to clinical assessments with respect to fall predictions. 
Our method covered a range of different commonly 
used (39) assessments; however, not all commonly 
used clinical assessments were explored and thus our 
conclusion is restricted to the examined assessments. 
Several other assessments, such as: the Barthel Index, 
the Postural Assessment Scale for Stroke Patients, Fun-
ctional Reach Test and the balance subscale of Fugl-
Meyer Assessment are highly correlated with the BBS 
that we used (39) and as such probably have limited 
added value over the BBS in regard to fall prediction. 
Finally, it should be noted that LASA was developed 
with a general older population, not specifically for 
stroke survivors, although having a stroke was not an 
exclusion criteria of LASA.

Conclusion

This explorative study indicates that both laboratory-
based, as well as daily-life gait characteristics, showed 
some ability to predict prospective falls in higher 
functioning chronic stroke survivors, whereas clini-
cal assessments, such as physical and psychological 
assessments, were more limited in predicting falls. 
Therefore, further investigation of gait assessment 
over clinical tests is justifiable, as clinicians might 
enhance currently used fall prediction assessments in 
ambulatory chronic stroke survivors by applying one 
of both tested gait assessments. 
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