UPPER EXTREMITY FUNCTION IN HEMIPLEGIA

A Cross-validation Study of Two Assessment Methods

Karin Bergland and Axel R. Fugl-Meyer

From the Departments of Internal Medicine, Örebro University Hospital and Physical Medicine and Rehabilitation, University of Umeå, Sweden

ABSTRACT. The methods devised by DeSouza et al. (2) and by Fugl-Meyer et al. (6) for description of upper extremity function after stroke were compared by parallel assessments in a consecutive series of 50 patients with hemiplegia. Very close positive associations between both methods indicated a high degree of cross-validity. As both methods appear to be externally valid, they may have good inter-rater reliability and as the time needed for assessing the arm function of a hemiplegic or hemiparetic patient rarely exceeds 10 min, it appears that the two methods possess about equal descriptive power.

Key words: stroke, hemiplegia, assessment, upper extremity

This investigation was designed to compare two methods for assessment of upper extremity function after stroke with unilateral motor impairment. Method A is that described by Fugl-Meyer et al. (6) while method B is that presented by DeSouza et al. (2).

Method A is based on the concept of Twitchell (11) that after stroke with hemiplegia, motor recovery, if occurring, follows an obligatory path. A concept which later was used by Reynolds et al. (9) and thereafter by Brunnstrom (1) for description of motor recovery and for treatment of motor function in hemiplegia. Fugl-Meyer et al. (6) used a scoring method which for the motor function of the upper extremity reaches from 0 (Bashford paralysis) to 66 (normal motor function). Scores for joint position sense are 0-8 and for passive joint movement and pain during such movements between 0 and 24 each, while exteroception is between 0-4. Thus, maximum score is 120. For the experienced physician or therapist the total assessment time for the upper extremity is about 8-12 min.

Method B is designed to take into account "the possible differential neural control of arm movements and the proximal to distal pattern of functional recovery" after stroke (2). The assessment of motor function includes evaluation of muscle tone and use of functional tests for arm and trunk movement (turning cranked wheel) and for hand function. Passive range of joint movement and occurrence of pain during such manoeuvres are also assessed. The total score is 25, of which the maximum motor score is 19, while the cumulative score for assessment of sensory and joint function is six.

PROCEDURE

Out of a total number of 170 consecutive patients discharged with a diagnosis of stroke (12), 88 of the survivors fitted the criteria of having had only one stroke and having no previous upper extremity impairments. Only those in whom the upper extremity showed at least some motor impairment (n=50) were included in this validation study. All assessments were performed in the domiciles of the patients by one and the same occupational therapist (K. B.) who was well acquainted with both methods. The detailed manual given by the authors of both methods were rigidly followed. This implies that for both methods and throughout the assessment procedure the subjects were seated. For comparison both parametric (linear regression) and non-parametric (Spearman's r) statistics were used.

RESULTS

The total scores for A and B covaried closely (Fig. 1), explaining more than 90% of the variance. Comparing only the motor assessments these were also closely associated, explaining more than 80% of the variance (Fig. 2). For none of the assessment methods were there significant right/left differences in total and in motor scores.

There was however a certain tendency towards clustering of maximum and minimum scores using method B. In fact, 6 subjects obtained maximum motor score and 3 maximum total score according to this method. Also using method B, 10 subjects clustered at the lowest motor score while no such cluster-
ings occurred for method A. Thus indicating less discriminative power towards scale end-points for method B than for method A.

DISCUSSION

The principle findings are the very good cross-validity for the two methods. It is particularly intriguing that performance of practical motor tasks (i.e. method B) reflects the ontogenetic stage of motor development which method A has been shown to describe (6). DeSouza et al. (3) also have found a close correlation between method A and a pursuit tracking task using elbow movements. Concerning method A, De Weerd & Harrison (4) recently demonstrated good cross-validity with yet another test of arm-hand practical performance. These associations imply that it may be possible to construct assessment methods built upon everyday activities but still reflecting the actual stage of motor development.

Validity, reliability, reproducibility and reasonable time consumption are basic requirements for any evaluation method. Method A has previously been shown to be internally valid, i.e. measures what it is hypothesised to measure (6). Both methods appear to be externally valid. For instance, for method A, significant positive co-relations between degree of motor impairment and ADL capacity (7), leisure time activities (30) and occupational return (8) have been found. Both methods also possess high degrees of inter-rater reliability (2, 5). They are also reproducible. As they, moreover, require only rather short time for individual assessments (about 10 min each) they both fulfill basic demands for clinical tests of this kind. Both tests appear to be relatively insensitive to perceptual disorders. About 50% of all subjects with left motor deficit due to stroke have perceptual dysfunctions, always including disturbances in the body scheme. There were, though, no significant right-left differences in total or in motor performance using any of the two tests.

We conclude that both methods adequately describe the performance of the affected upper extremity after a stroke with hemiplegia/paresis. The methods appear to be of equal value for clinical use, although the method with the greater scale-width (A) may discriminate best when dealing with extremely low or near normal upper extremity performance.

REFERENCES


Address for offprints: Karin Berglund, OT
Department of Internal Medicine
Ornsköldsvik Hospital
Ornsköldsvik Sweden
ings occurred for method A. Thus indicating less discriminative power towards scale end-points for method B than for method A.

DISCUSSION

The principle findings are the very good cross-validity for the two methods. It is particularly intriguing that performance of practical motor tasks (i.e. method B) reflects the ontogenetic stage of motor development which method A has been shown to describe (6). DeSouza et al. (3) also have found a close correlation between method A and a pursuit tracking task using elbow movements. Concerning method A, De Weerd & Harrison (4) recently demonstrated good cross-validity with yet another test of arm-hand practical performance. These associations imply that it may be possible to construct assessment methods built upon every-day activities but still reflecting the actual stage of motor development.

Validity, reliability, reproducibility and reasonable time consumption are basic requirements for any evaluation method. Method A has previously been shown to be internally valid, i.e. measures what it is hypothesized to measure (6). Both methods appear to be externally valid. For instance, for method A, significant positive co-relations between degree of motor impairment and ADL capacity (7), leisure time activities (5) and occupational return (8) have been found. Both methods also possess high degrees of inter-rater reliability (2, 5). They are also reproducible. As they, moreover, require only rather short time for individual assessments (about 10 min each) they both fulfill basic demands for clinical tests of this kind. Both tests appear to be relatively insensitive to perceptual disorders. About 50% of all subjects with left motor deficit due to stroke have perceptual dysfunctions, always including disturbances in the body scheme. There were, though, no significant right/left differences in total or in motor performance using any of the two tests.

We conclude that both methods adequately describe the performance of the affected upper extremity after a stroke with hemiplegia/paresis.

methods appear to be of equal value for clinical use, although the method with the greater scale-width (A) may discriminate best when dealing with extremely low or near normal upper extremity performance.

REFERENCES


Scand J Rehab Med 18


Address for offprints: Karin Berglund, OT Department of Internal Medicine Örnsköldsvik Hospital Örnsköldsvik Sweden

Scand J Rehab Med 18