of the child, the child's cooperation, and his or her ability to activate the motor units tested should always be added to the test protocol.

Complete testing of the 10 muscle groups in the present study, on both dominant and non-dominant sides, takes about 30–40 min to perform. In clinical practice the number of muscle groups can be reduced, and the time for measuring muscle force consequently shortened.

ACKNOWLEDGEMENTS

This investigation was supported by grants from "Förenade Liv" Mutual Group Life Insurance Company, Stockholm, Sweden, the County Council of Östergötland, Sweden (project number ÖJI. 18/50 and 18/51), and the Svenska Livets och Stiftelsefonden, Stockholm, Sweden, which we gratefully acknowledge. We also thank Erik Leander, lecturer at the Mathematics Institute, Umeå University, Linköping, for expert help with the statistical evaluation.

REFERENCES

11. Penny and Giles Transducers Limited, Christchurch, Dorset, Operating Instructions for the Myometer.

Address for offprints: Eva Bäckman, MD Department of Neuropsychology University Hospital S-58185 Linköping Sweden

CONTINUOUS MONITORING OF DETRUSOR PRESSURE IN PATIENTS WITH A REFLEX URINARY BLADDER AFTER SPINAL CORD INJURY

Mikael Thyrberg, Staffan Gedda, Per B. Johansen, Claes Lausvik, Anders Splingleber and Anders Engberg

From the 1Department of Rehabilitation Medicine, 2Department of Urology and 3Department of Clinical Physiology, University Hospital, Linköping, Sweden

ABSTRACT: In spinal cord injury, the detrusor pressure, as a parameter of urinary bladder dysfunction, is related to incontinence and renal complications. In order to determine the intradividual variation of maximum pressure and duration of detrusor contractions, in patients with a spinal reflex bladder, the detrusor pressure was registered during 24 hours of physiological filling in 16 patients. Between the bladder contractions the detrusor pressure was low in all patients, indicating high bladder compliance. During contractions the maximum detrusor pressure and its duration varied both inter- and intradividually. In individual patients, however, mean values during the initial 12 hours correlated with mean values during the final 12 hours. Thus, mean values of a series of contractions appear to be characteristic of each patient and useful in describing the working pressure in spinal reflex bladder.

Key words: manometry, neurogenic bladder, pressure, spinal cord injuries—complications, spondylosis.

In rehabilitation of patients with spinal cord injuries the neurogenic bladder is of great importance with regard both to incontinence and to renal complications (24). Detrusor pressure is used as a parameter of bladder function, and a high pressure during filling or emptying is believed to be a risk factor. In patients with myelodysplasia and autonomous bladder the renal complications are more common when a high detrusor pressure is required for leakage (15). In patients with a traumatic spinal cord injury and a reflex bladder with detrusor–spinal dysfunction (2) there is a suspicion of a relation between high detrusor pressure and renal complications (27). Thus a urodynamical evaluation might be helpful in the choice of initial treatment and follow-up programmes. While the detrusor pressure exceeds approximately 40 cmH2O the function of the upper urinary tract is temporarily affected (3, 17). Thus amplitude and duration of the detrusor pressure increase are interesting parameters. The procedure of measuring the detrusor pressure is, however, not yet standardized. The type and position of the catheters vary and the filling rate may be rapid or slow, mimicking physiological conditions. In patients with normal bladder function a single cystometry is believed to give representative information about the detrusor pressure (26). Whether this is also true in patients with a spinal reflex bladder is not obvious (22), and detrusor pressure will be dependent on a complex interplay between detrusor and sphincter reflex function (19).

Our aim was to study patients with a spinal reflex bladder in order to evaluate the following questions:

1. Does one bladder contraction give representative information about the maximum detrusor pressure and its duration, in an individual patient?

PATIENTS

Patients with a traumatic spinal cord lesion treated in our department of rehabilitation were investigated, using the following inclusion criteria: a period of more than six months should have elapsed after spinal cord injury; the patient should have a reflex bladder, according to Labèque's classification (12), with neither sensation of bladder filling nor voluntary control of bladder on clinical examination and cystometry; upper urinary tract operations should not have been performed. 17 patients entered the study, but one of these had to be excluded because a catheter was accidentally withdrawn during registration. Thus data from 16 patients are reported.

General patient data

All patients were men with an age ranging from 29 to 50, and a median of 27. The post lesion time ranged from 7

The levels of the spinal cord injuries are shown. Level of cord injury means that the function is normal down to the segmental level marked and the degree of functional loss below the level is indicated by the Frankel classification. In addition to spontaneous reflex emptying, each patient emptied the bladder regularly by tapping (Tap) or clean intermittent catheterization (CIC).

Table I: Patient data

<table>
<thead>
<tr>
<th>Level of cord injury</th>
<th>Frankel class</th>
<th>Emptying by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C6</td>
<td>C6</td>
<td>C6</td>
</tr>
<tr>
<td>C6</td>
<td>C6</td>
<td>C6</td>
</tr>
<tr>
<td>T5</td>
<td>T6</td>
<td>T7</td>
</tr>
<tr>
<td>T8</td>
<td>T8</td>
<td>T10</td>
</tr>
<tr>
<td>T12</td>
<td>T12</td>
<td>T12</td>
</tr>
<tr>
<td>T12</td>
<td>L1</td>
<td>L1</td>
</tr>
</tbody>
</table>

months to 22 years, with a median of 2 years. None of the patients had pressure sores.

Neurological data

The level of the lesion and Frankel classification (8) of each patient are shown in Table I. Those with an incomplete spinal cord lesion had no motor function below the level of the lesion, thus classed as Frankel B, and a typical anterior cord syndrome with no sensation of pain, heat or cold below the level of the lesion (10). The bulbocavernous reflex, the anal stretch reflex and the anal clitoral reflex were positive in all patients. The quadriceps reflex and the cremaster reflex were positive in all but one patient.

Urological data

11 patients performed clean intermittent self-catheterization and five patients emptied their bladders by tapping (Table I). In addition all patients had spontaneous leakage with varying frequency and all used condoms with urinary collecting devices. On intravenous pyelography and gamma camera renography (Tc-99mDTPA), within one month before or after the present study, no patient had dilatation of the upper urinary tracts and all had normal renal function with a clearance range from 92 to 148 ml/min. During the urodynamic study and the preceding week no patient was on any medication with known or suspected effect on the function of the lower urinary tract (7). No patient had clinical symptoms of urinary tract infection when admitted one week before the study, but patients with recent urinary infection were treated with appropriate antibiotics during the week before the study. No intravesical calculi was observed on X-ray examinations performed three days before the urodynamic study.

METHODS

In the morning before the urodynamic studies, the bowel was emptied in the way normally used by the patients, i.e., by tapping or intermittent self-catheterization and spontaneous reflex contractions. The patients were not catheterized. The patients were allowed to alternate between supine and sitting positions in bed. The duration of a detrusor contraction was defined as the time during which the detrusor pressure exceeded 20 cmH2O. In addition to this duration, the time in which the pressure exceeded 40 cmH2O during each contraction, was measured. The detrusor pressure during the filling phase was defined as the pressure measured from two minutes after a detrusor contraction to one minute before the next contraction. These time limits were chosen to exclude small slopes of the phase of detrusor contraction curves. The maximum detrusor pressure during contraction was rounded to the nearest 10 cmH2O. Methods, definitions, and units conform to the standards proposed by the International Continence Society (11) except where specifically noted. Spearman’s correlation coefficient (r) was used for statistical analyses.

RESULTS

No complications from the punctures or the catheters were observed. A sensitive indication of the function of the catheters was the pressure variation due to respiration (Fig. 1). As indicated by Fig. 1 simultaneous recording of intravesical and abdominal pressure was important. There was no drift of the curves during the 24 hours. In the patients as a group the mean diuresis during 24 hours was 1.2 ml/min with a range of 0.7–1.8 ml/min.

The detrusor pressure

During the filling phase the increase of pressure was below 5 cmH2O and the final pressure was below 10 cmH2O in all patients. A total of 271 spontaneous reflex detrusor contractions was registered, and in all but two urinary leakage was noted. In all patients the detrusor pressure during contractions was characterized by a rapid rise and usually a plateau with one or a few peaks of short duration, and finally a slow decrease (Fig. 1). The maximum detrusor pressure of the contractions is diagrammatically shown in Fig. 2. Most patients have a mode (most frequent) maximum pressure and some less frequent maximum detrusor pressures distributed around that mode. The mean maximum detrusor pressure during the initial 12 hours correlated with the same measurement during the final 12 hours (Figs. 3).

The duration of the detrusor contractions varied from 10 sec to about 6 min, with considerable variation in each patient. The mean duration during the initial 12 hours, however, correlated with the same measurement during the final 12 hours; r=0.81 (p<0.001). The time in which the detrusor pressure was more than 40 cmH2O in each contraction, also varied considerably in most patients (Fig. 4). The mean time in which the detrusor pressure exceeded 40 cmH2O in contractions during the initial 12 hours correlated with the same measurement during the final 12 hours (Fig. 5).

In patients with high maximum detrusor pressures, the time in which the pressure exceeded 40 cmH2O tended to be longer than in patients with low maximum detrusor pressures (Fig. 6).
Table 1. Patient data

<table>
<thead>
<tr>
<th>Level of cord injury</th>
<th>Frankel class</th>
<th>Emptying by</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6</td>
<td>B</td>
<td>Top</td>
</tr>
<tr>
<td>C6</td>
<td>C</td>
<td>Top</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>B</td>
<td>CIC</td>
</tr>
<tr>
<td>C6</td>
<td>A</td>
<td>CIC</td>
</tr>
</tbody>
</table>

Neurological data

The levels of the lesion and Frankel classification (8) of each patient are shown in Table 1. Those with an incomplete spinal cord lesion had no motor function below the level of the lesion, thus classified as Frankel B, and a typical anterior cord syndrome with no sensation of pain, heat, or cold below the level of the lesion (10). The bulbocavernous reflex, the anal stretch reflex and the achilles tendon reflex were positive in all patients. The quadriceps reflex and the cremaster reflex were positive in all but one patient.

Urological data

11 patients performed clean intermittent self-catheterization and five patients emptied their bladders by tapping (Table 1). In addition all patients had spontaneous urination with varying frequency and all used condoms with urinary collecting devices. On intravenous urography and gamma camera renography (TC(99m)TcDTPA), within one month before or after the present study, no patient had dilatation of the upper urinary tracts and all had normal renal function with a clearance range from 92 to 148 ml/min. During the urodynamical study and during the preceding week no patient was on any medication with known or suspected effect on the function of the lower urinary tract (7). No patient had clinical symptoms of urinary tract infection when admitted one week before the study, but patients with preceding infections were treated with appropriate antibiotics during the week before the study. No intravesical calculi was observed on X-ray examinations performed three days before the urodynamical study.

METHODS

In the morning before the urodynamical studies, the bladders were emptied in the way normally used by the patients, i.e. by tapping or intermittent self-catheterization and spontaneous reflex contractions. The patients then had a meal and were measured. The patient was allowed to alternate between supine and sitting positions in bed. The duration of a detrusor contraction was defined as the time during which the detrusor pressure exceeded 20 cmH2O. In addition to this duration, the time in which the pressure exceeded 40 cmH2O during each contraction was measured. The detrusor pressure during the filling phase was defined as the pressure measured from two minutes after a detrusor contraction to one minute before the next contraction. These time limits were chosen to exclude small slopes of the phasic detrusor contraction curves. The maximum detrusor pressure during contraction was rounded to the nearest 10 cmH2O. Methods, definitions, and units conform to the standards proposed by the International Continence Society (11) except where specifically noted. Spearman's correlation coefficient (r) was used for statistical analyses.

RESULTS

No complications from the punctures or the catheters were observed. A sensitive indication of the function of the catheters was the pressure variation charged. The same pattern was seen during involuntary spastic movements. (D) A movement with a rise of abdominal pressure followed by a detrusor contraction. The value of simultaneous registrations of intravesical and abdominal pressures with electronic subtraction is obvious.
and the mean time in which the pressure exceeded 20 cmH₂O (the mean duration).

DISCUSSION

In this study of the detrusor pressure, we tried to minimize the risk of artefacts by using physiological filling (5, 14) and by avoiding catheters in the urethra (4, 9). Water filled catheters with external transducers were used (20) which gives a well defined reference level and a correct subtraction pressure. To get as close to the perivesical pressure as possible (1, 16) and to avoid pressure variations due to contractions of the rectum (13), we used perivesical catheters.

In neurogenic bladder dysfunction a high detrusor pressure of long duration may be present either during filling, if the compliance is low (15, 25), or during contraction, due to detrusor-sphincter dys-synergia with prolonged emptying time and large residual volumes (2). It is still debatable what pressure amplitude or duration is acceptable in order to avoid renal damage (4, 18, 27).

The detrusor pressure during the filling phases was low in all patients, without physiologically significant variations. This tallies with the theory that spared sacral reflex function is important in keeping the filling pressure low (13).

In no patient was the maximum detrusor emptying pressure constant during the registration. Although in many contractions the maximum pressure was close to the calculated mean maximum pressure of each patient, 14 patients had maximum pressures with an intradividual range of at least 50 cmH₂O (Fig. 2). In most of the patients there were maximum detrusor pressures both above and below 70 cmH₂O which has been proposed as a limit (18, 27) for the risk of renal damage. This variation has to be considered when discussing whether the pressure of a patient is too high or not. Neither the duration of the contractions nor the time in which the pressure exceeded 40 cmH₂O (Fig. 4) were constant in any patient.

However, a concept that the mean maximum pressure and the mean duration of the pressure rise in a number of contractions, obtained by repeated registrations during as physiological conditions as possible, are characteristic of each patient is supported by his study. The variation of the maximum detrusor pressure in each patient is reasonable if reflex sphincter and detrusor activity is the result of a number of interacting stimuli (14, 19), not modified by higher control functions (2). The parameters of the detrusor contractions of a patient may, like spasticity (6), be of a basic level depending on the lesion, but also vary depending on sensory stimuli. Despite avoiding major stimuli, such as urinary tract infection, some stimuli may be practically impossible to avoid during cystometry. In addition, some stimuli such as touch and proprioception are physiological and thus the cystometry would not necessarily be more valid if all stimuli except bladder filling could be avoided. Within this concept urinary tract infections, bladder calculi, pressure sores and other complications may act as major sensory stimuli with effect on the reflex behaviour of the bladder.

If the mean maximum detrusor pressure and the mean duration of the rise of pressure in a certain

Scand J Rehab Med 21

Fig. 2. The number of detrusor contractions with different maximum detrusor pressure in each patient during 24 hours. Contractions induced by tapping are not included. For each patient the standard deviation in cmH₂O is given.

Fig. 3. The mean maximum detrusor pressure of each patient during the initial 12-hour period plotted against the final 12-hour period, $r_s=0.72$ ($p<0.001$).

Fig. 4. The number of detrusor contractions exceeding 40 cmH₂O and the time in which this level was exceeded. Since contractions not exceeding this level are not plotted, the total number of contractions are less than in Fig. 2 in some patients. Contractions induced by tapping are not included. For each patient the standard deviation in seconds is given.

Fig. 5. The mean time of detrusor pressure exceeding 40 cmH₂O in contractions of each patient during the initial 12-hour period plotted against the final 12-hour period, $r_s=0.94$ ($p<0.001$).
and the mean time in which the pressure exceeded 20 cmH₂O (the mean duration).

DISCUSSION

In this study of the detrusor pressure, we tried to minimize the risk of artefacts by using physiological filling (5, 14) and by avoiding catheters in the urethra (4, 9). Water-filled catheters with external transducers were used (20) which gives a well-defined reference level and a correct subtraction pressure. To get as close to the perivesical pressure as possible (1, 16) and to avoid pressure variations due to contractions of the rectum (13), we used preservical catheters.

In neurogenic bladder dysfunction a high detrusor pressure of long duration may be present either during filling, if the compliance is low (15, 25), or during contraction, due to detrusor-sphincter dysynergia with prolonged emptying time and large residual volumes (2). It is still debatable what pressure amplitude or duration is acceptable in order to avoid renal damage (4, 18, 27).

The detrusor pressure during the filling phases was low in all patients, without physiologically significant variations. This tallies with the theory that spared sacral reflex function is important in keeping the filling pressure low (13).

In no patient was the maximum detrusor emptying pressure constant during the registration. Although in many contractions the maximum pressure was close to the calculated mean maximum pressure of each patient, 14 patients had maximum pressures with an intradividual range of at least 30 cmH₂O (Fig. 2). In most of the patients there were maximum detrusor pressures both above and below 70 cmH₂O which has been proposed as a limit (18, 27) for the risk of renal damage. This variation has to be considered when discussing whether the pressure of a patient is too high or not. Neither the duration of the contractions nor the time in which the pressure exceeded 40 cmH₂O (Fig. 4) were constant in any patient.

However, a concept that the mean maximum pressure and the mean duration of the pressure rise in a number of contractions, obtained by repeated registrations during as physiological conditions as possible, are characteristic of each patient is supported by his study. The variation of the maximum detrusor pressure in each patient is reasonable if reflex sphincter and detrusor activity is the result of a number of interacting stimuli (14, 19), not modified by higher control functions (2). The parameters of the detrusor contractions of a patient may, like spasticity (6), be of a basic level depending on the lesion, but also vary depending on sensory stimuli. Despite avoiding major stimuli, such as urinary tract infection, some stimuli may be practically impossible to avoid during cystometry. In addition, some stimuli such as touch and proprioception are physiological and thus the cystometry would not necessarily be more valid if all stimuli except bladder filling could be avoided. Within this concept, some complications may act as major sensory stimuli with effect on the reflex behaviour of the bladder.

If the mean maximum detrusor pressure and the mean duration of the rise of pressure in a certain...
number of emptying phases, during a period of physiological filling, are characteristic of each patient, these mean values would be useful in evaluation of pressure as a risk factor in spinal reflux bladder. Mean values from several contractions would also be useful in evaluation of different forms of therapy with possible effect on urinary bladder function. Regarding the maximum detrusor pressure, most patients had a standard deviation below 14 cmH2O. Thus, if the measurements had a normal distribution, registration of 8 contractions would have 95% probability give a maximum pressure within 10 cmH2O from the patient’s true mean maximum pressure. Registration of four contractions would have 95% probability give a mean pressure within 14 cmH2O from the true mean maximum pressure.

Regarding the mean time during which the detrusor pressure exceeded 40 cmH2O all but two patients had a standard deviation below 50 s. Thus, if the measurements had a normal distribution, registration of 8 contractions would have 95% probability give a mean time within 35 s from the true mean time. Registration of four contractions would have 95% probability give a mean time within 50 s from the true mean time.

In the individual patient the need for precision will depend on how exactly the risk levels can be defined and how close to these levels the patient’s mean values are. If these mean values could be predicted by a few registrations of standardized retrograde filling cystometry the evaluation would be easier in clinical practice. The possible influence of non physiological filling rates (5) requires further study.

In addition to detrusor pressure, reflux and residual urine with infection are considered to be risk factors. These factors are thought to interest but the exact role of each factor in the presence or absence of the others is not fully understood (4, 23). Regarding the detrusor pressure, a rise to about 40 cmH2O of long duration may affect the upper urinary tract even if reflux is not present (3, 17). Richter et al. (18) found a correlation between maximum detrusor pressure and pressure time in patients with a spinal reflux bladder. We found a weak and not statistically significant correlation. However, a moderate correlation between maximum detrusor pressure and the time in which the pressure exceeded 40 cmH2O was found in our study. Richter et al. also found that reflux only developed in patients with a maximum detrusor pressure above 70 cmH2O and a pressure time above 60 s. Further research should also consider the indications and the therapeutic value of sphincterotomy, clean intermittent self-catheterization and anticholinergic drugs. In rehabilitation of patients with spinal cord injuries these questions have been discussed with respect to 1) risk factors and their relation to renal damage and 2) continence and its relation to the quality of life.

Fig. 6. The mean maximum detrusor pressure plotted against the mean time of pressure exceeding 40 cmH2O in each patient during 24 hours, r=0.53 (p<0.025).

CONCLUSION

In patients with a spinal reflex bladder the detrusor pressure during physiological filling is low in the absence of phasic contractions, i.e. bladder compliance is high. No clinically significant variation is obtained in repeated filling.

With physiological filling the intradividual variation of the maximum detrusor pressure and its duration, during contraction, makes it necessary to use mean values from several contractions in studies of these parameters in a patient.

REFERENCES

Fig. 6. The mean maximum detrusor pressure plotted against the mean time of pressure exceeding 40 cmH2O in each patient during 24 hours, r=0.53 (p<0.025).

CONCLUSION
In patients with a spinal reflex bladder the detrusor pressure during physiological filling is low in the absence of phasic contractions, i.e. bladder compliance is high. No clinically significant variation is obtained in repeated filling.

With physiological filling the intradividual variation of the maximum detrusor pressure and its duration, during contraction, makes it necessary to use mean values from several contractions in studies of these parameters in a patient.

REFERENCES

Address for affiffies:
Mikael Thyberg
Department of Rehabilitation Medicine
University Hospital
S-90185 Linköping
Sweden.