A controlled study on the outcome of inpatient and outpatient treatment of low back pain

Part III. Long-term Follow-Up of Pain, Disability, and Compliance

Kristina Härkilä, Guy Mellin, Aila Järviskoni and Heikki Hurri

From the Rehabilitation Foundation, Helsinki, Finland

ABSTRACT. The long-term outcome results of inpatient and outpatient treatment of low back pain (LBP) were studied in 476 subjects (aged 35-54, 63% men) randomly assigned to three study groups: inpatients (n = 157), outpatients (n = 159), and controls (n = 160). The study included changes in the severity of low back pain, grade and disability, compliance with self-care, data on disability pensions, and days of sickness allowance during a 2.5-year follow-up period. These variables were used as outcome criteria. Pain and disability had decreased significantly in the two treated groups up to the 3-month follow-up. LBP was still a little more prevalent in the inpatients at the 1.5-year and 22-month follow-ups, but there were no significant differences between the groups in disability caused by LBP. The refresher programme carried out 1.5 years after the first one did not bring about as clear short-term improvement in pain and disability as the first treatment. During the whole 2.5-year follow-up compliance with self-care was better in the two treated groups, especially in the inpatients. Days of sickness allowance had increased somewhat more in the controls than in the inpatients during the follow-up. No differences between the groups were found in the number of disability pensions granted.

Key words: low back pain, outcome of treatment, compliance.

The magnitude and diversity of problems connected with chronic low back pain, its prevention, rehabilitation, and management has been widely recognized, and the need for preventive and early rehabilitation measures has been strongly emphasized (e.g. 1, 14, 15). There are, however, only a few studies in which the outcome of secondary prevention of low back trouble has been investigated in a controlled fashion (cf. 8, 9, 12, 13, 14, 16, 19, 22). Results from outcome studies have been controversial; to compare results from different studies is difficult because of the diversity of study designs, treatments applied, patient samples, evaluations of outcome, and follow-up periods.

Promising results have been reported from, among others, the studies of Mayer et al. (19) and Linton et al. (14) where the problem of chronic low back pain has been attacked with new approaches. The present study is a controlled prospective study on the outcome of interventions consisting of both preventive and rehabilitative components. The sample of the study comprised subjects with a risk of back pain disability assessed on the basis of their former back pain and work history. Two kinds of interventions were used, i.e. inpatient and outpatient treatment. The interventions consisted of educational components, e.g. on ergonomic factors, back and relaxation exercises, and other physical therapy modalities, emphasizing the role of self-care in the prevention and early rehabilitation of low back disability.

The present paper deals with outcome results based on the 2.5-year follow-up period of the two interventions modalities, using pain, disability, compliance with self-care, and days of sickness allowance as criteria. In addition, data on disability pensions are presented. In Parts I and II of the study (10, 20) the short-term effects, i.e. results of the 3-month follow-up, were described. Long-term effects on physical measurements are presented in another paper (21).

MATERIAL AND METHODS

Subjects. The subjects (n=476, aged 35-54, 63% male) were selected from among blue-collar workers employed by two State Institutes and various enterprises in the Helsinki Metropolitan Area, and farmers from Southern Finland. Selection was carried out by a mailed questionnaire, the final section being made in an examination by a physiotherapist. The main criteria for selection were (a) the subject had been engaged in physically strenuous or moderately strenuous work for at least ten years, (b) he/she had suffered from chronic or recurrent low back pain for at least two years, (c) it had affected his/her working and physical capacity, (d) it had caused sickness during the past two years, and (e) low back pain was the major health problem of the subject; no other
severe long-term illnesses were present. The subjects were randomly assigned to three intervention groups: the inpatient group, the outpatient group, and the control (no treatment) group.

Procedure: The study comprised pre-treatment examinations, one treatment period plus a refresher programme after 1.5 years, and five follow-ups. The pre-treatment examinations consisted of interviews, examinations by a physiatrist and a physiotherapist, and questionnaire surveys. The follow-ups were carried out 3, 8, and 18 months after the first treatment and 3 and 12 months after the refresher programme. Apart from the 8-month follow-up, which was a questionnaire survey, all other follow-ups also comprised physical measurements and/or a physiatrist’s examination.

The physiatric and physical examinations have been described earlier (28). The questionnaires had items on, e.g. the frequency and intensity of back pain, disability caused by low back pain (e.g. 3, 16, 22), and previous back care. Data on psychosocial and behavioural factors connected with low back trouble were also gathered. Data on disability pensions and sickness allowances were obtained from the records of the Social Insurance Institution.

In all, 403 subjects attended the 2.5-year follow-up, i.e. altogether 85% of the original sample was reached at the final examinations. Data on sickness allowances and disability pensions were, however, obtained for all the subjects in the original sample. A careful analysis between those who had dropped out of the study and the remaining subjects showed that there was no systematic and statistically significant selection bias present affecting the outcome results.

Context of treatment. The first inpatient programme consisted of a 3-week rehabilitation period at a rehabilitation center. The outpatients received a back pain in a 15-sessions back treatment programme (twice a week during a 2-month period) either at the workplace or at the local health centres. The outpatients participated in the programme during their working hours, whereas the inpatients had a 3-week leave from work during their treatment. A more detailed description of the treatment programmes is given by Meller et al. (29) and Halmi et al. (10).

Both treatment modes were carried out in groups of 6-8 patients. The programmes comprised a modified Swedish back school, back and muscle relaxation exercises, and heat or electrotherapy prior to the back exercise sessions. These sessions were led by a physiotherapist who, during the first weeks of the programme, taught the patients the exercises and muscle strengthening exercises during their programme. Both in- and outpatients attended two structured group discussions, led by a psychologist, on how to cope with chronic pain, plus one discussion on back care led by a physiatrist. All in- and outpatients were taught a back exercise programme to be practiced outside the programme.

The aim of the refresher programme (2 weeks for inpatients, 8 sessions for outpatients) 1.5 years later was to re-establish and revise the self-care skills learned earlier.

The control group received written and oral instructions on back exercises and ergonomics during the physiatric examination at the beginning of the study and at the 3-month, 1.5-year, and 2.5-year follow-ups.

The accomplishment of back exercises was checked in all groups at the 3-month, 1.5-year, and 2.5-year follow-ups and corrected, if necessary, by the physiatric.

Outcome variables: The following indices and variables are used to describe outcome results (cf. 10):

1. The Pain Index (range 0-400; reliability = 0.89) is a sum of four items which describe the severity of low back pain (c) in general, (b) in the morning, (c) after the work day, and (d) in the evening.
2. The LBP Disability Index (range 0-45, reliability = 0.89) comprises 15 items describing disability caused by low back pain during the past month in different situations and activities.
3. Long-term pain: A variable describing long-term pain was formed on the basis of changes in the LBP Disability Index from pre-treatment to the 2.5-year follow-up. The reliable change index (RC) suggested by Jacobson et al. (11) for outcome research was used as a criterion for a "true" change. This means that the difference score (post-pre) is divided by the standard error of measurement (SEM). RC = (X - Xp) / Xs where Xp = mean at baseline and Xs = SEM. A reliable change is a change of 1.96 or more for p < 0.05 without actual change. Thus, with an n = 0.89 a difference score of 5 points in the LBP Disability Index would indicate an actual change. In addition, if the pre-treatment value of the Disability Index was ≤ 5 points, no gain was recorded. Three groups describing long-term gains were formed: (a) clear gain, i.e. a 5-point decrease at the 3-month follow-up plus at least three of the other follow-ups when compared with the pre-treatment score, and no increase in disability during the 2.5-year follow-up period. (b) slight gain, i.e. a 5-point decrease at the 3-month follow-up plus at least two of the other follow-ups, and (c) all other changes were recorded as no gain.
4. Compliance and self-care. Accomplishment of back exercises was rated by the physiatric with a 5-point scale, indicating the number of formal exercise sessions. The adherence was based on the subject's answer to the questions: (a) how many times did you perform the exercise during a workday? (b) how many times did you perform the exercise during a weekend? (b) how many times did you perform the exercise during the evening? (c) how many times did you perform the exercise during your free time? (c) how many times did you perform the exercise during your free time?
5. Days of sickness allowance. According to the National Insurance Scheme sickness allowance is payable to all employed and self-employed people between 16 and 65 who are incapable of doing their ordinary work or comparable work because of sickness or an injury sustained in connection with their work. In 2001, the average sickness allowance was 230 days.

RESULTS

There were no statistically significant differences between the study groups in the pre-treatment data (cf. 10).

Changes in the Pain Index: The mean scores of the Pain Index by study group at the initial phase and at each of the follow-ups are presented in Table 1. The short-term effect, i.e. 3-month follow-up results, were evident in both treated groups (cf. 10). At the 8-month follow-up the groups did not differ from each other in a statistically significant way. There was a tendency to differences between groups in the changes of the Pain Index from pre-treatment to the 1.5-year follow-up (F(2,409) = 2.82, p < 0.06). The decrease in LBP was greatest in the inpatients who differed significantly from the outpatients (p(409) = 2.36, p < 0.002), but not from the controls.

The decrease in LBP was greatest in the inpatients who differed significantly from the outpatients (p(409) = 2.36, p < 0.002), but not from the controls. At the final 2.5-year follow-up the study groups did not differ from each other.

Changes in the LBP Disability Index: The pre-treatment and follow-up mean scores of the LBP Disability Index for each study group and the total score of the study are presented in Fig. 1. As according to the Pain Index, disability caused by low back pain had decreased in both treated groups, when compared with the controls, from the pre-treatment phase to the 3-month follow-up (cf. 10). Long-term changes in disability showed no statistically significant differences between the groups at any of the follow-ups.

Long-term pain: According to the criteria mentioned above 25% of the inpatients had a clear long-term gain from the treatment during the 2.5-year follow-up period (Table 1). The respective proportions were 14% for the outpatients and 10% for the controls. The three-group Chi-square test showed a statistically significant difference between the study groups χ2(4) = 14.21, p < 0.001 (the inpatients and controls differed from each other significantly χ2(2) = 11.76, p < 0.01, and there was a tendency to a difference between the inpatients and outpatients χ2(2) = 5.65, p < 0.10, but no difference between the outpatients and controls χ2(2) = 2.12, NS).

Compliance with self-care: Accomplishment of back exercises was significantly better in the two treated groups than in the control group at both the 1.5-year and 2.5-year follow-ups. A significantly greater proportion of the inpatients (6(93) = 2.05, p < 0.004) received back exercises than in the outpatients. At the final 2.5-year follow-up the study groups did not differ from each other.

Fig. 1. Mean scores of the Pain Index by study group at the pre-treatment phase and the five follow-ups.

Fig. 2. Mean scores of the LBP Disability Index by study group at the pre-treatment phase and the five follow-ups.

Stand J Rehab Med 32
severe long-term illnesses were present. The subjects were randomly assigned to three intervention groups: the inpatient group, the outpatient group, and the control (no treatment) group.

Procedure. The study comprised pre-treatment examinations, one treatment period plus a refresher programme after 1.5 years, and five follow-ups. The pre-treatment examination consisted of, inter alia, questionnaires, examinations by a physiotherapist, and questionnaire surveys. The follow-ups were carried out 3, 8, and 18 months after the first treatment and 3 and 12 months after the refresher programme. Apart from the 8-month follow-up, which was a questionnaire survey, all other follow-ups also comprised physical measurements and/or a physiotherapist’s examination.

The physiotherapeutic and physical examinations have been described earlier (20). The questionnaires had items on, e.g. the frequency and intensity of back pain, disability caused by low back pain (e.g. 3, 10, 22), and previous back care. Data on psychological and behavioural factors connected with low back trouble were also gathered. Data on disability pensions and sickness allowances were obtained from the records of the Social Insurance Institution.

In all, 403 subjects attended the 2.5-year follow-up, i.e., altogether 85% of the original sample was reached at the final examinations. Data on sickness allowances and disability pensions were, however, obtained for all the subjects in the original sample. A careful analysis between those who had dropped out of the study and the remaining subjects showed that there was no systematic and statistically significant selection bias present affecting the outcome results.

Context of treatment. The first inpatient group consisted of a 3-week rehabilitation period at a rehabilitation center. The outpatient group had a 1.5-year follow-up treatment programme (twice a week during a 2-month period) either at the workplace or at the local health centre. The patients participated in the programme during their working hours, whereas the inpatients had a 3-week leave from work during their treatment period. A more detailed description of the treatment programme is given by Mellis et al. (20) and Höijj et al. (10).

Both treatment modes were carried out in groups of 6-8 patients. The programmes comprised a modified Swedish back school, back and muscle relaxation exercises, and heat or electrotherapy prior to the back exercise sessions. These sessions were led by a physiotherapist who was responsible for ensuring that the number of necessary back exercises demonstrated by the patient at the examination was applied. The assessment of the participants’ questions and answers concerning the correctness of the exercises was based on the participants’ answers to the questionnaires, i.e., on the frequency of back exercises (1 = never, 4 = daily), the frequency of relaxation exercises (1 = never, 4 = daily), and compliance with ergonomic instructions at work (1 = always, 4 = never) during the preceding month.

5. Days of sickness allowance. According to the National Insurance Scheme sickness allowance is payable to all employed and self-employed people between 16 and 65 who are incapable of doing their ordinary work or computer work because of illness. The maximum number of 305 working days per year is paid.

6. Disability pensions. Disability pensions are calculated as a percentage of the average number of days of sickness allowance per year.

Statistical analysis. Statistical tests were carried out using the following tests: Student’s t-test, analysis of variance (ANOVA), and chi-square test.

In the study, the Pain Index and the LBP Disability Index were used. The Pain Index was calculated as the sum of the Pain Index and the LBP Disability Index. The Pain Index was calculated as the sum of the Pain Index and the LBP Disability Index.
Table I. Frequencies (%) of those with clear, slight, or no gain according to the changes in the LBP Disability Index during the 2.5-year follow-up, and statistical significances (p) of differences between the groups (χ²)

<table>
<thead>
<tr>
<th></th>
<th>In-patients (n=152)</th>
<th>Out-patients (n=137)</th>
<th>Controls (n=144)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear gain</td>
<td>25</td>
<td>14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Slight gain</td>
<td>12</td>
<td>13</td>
<td>19</td>
<td>1-0.1</td>
</tr>
<tr>
<td>No gain</td>
<td>63</td>
<td>73</td>
<td>71</td>
<td>0-0.01</td>
</tr>
</tbody>
</table>

The study groups also differed in the reported frequency of back exercises at both the 1.5-year and 2.5-year follow-ups. The inpatients reported having done their exercises more frequently than the outpatients (p<0.01) and the controls (p<0.01 and 0.05). The outpatients and controls did not differ significantly from each other (Table II).

Approximately 30% of the treated subjects reported having done relaxation exercises at least once a week during the month prior to the 1.5-year follow-up, the respective percentages were 51% at the 2.5-year follow-up. The groups did not differ in a statistically significant way from each other (Table III).

Most of the subjects, irrespective of study group, reported having followed ergonomic instructions at work. The inpatients differed significantly from the controls at both follow-ups (p<0.02 and 0.001), and from the outpatients at the 2.5-year follow-up (p<0.01). There was also a significant difference between the inpatients and controls at the 1.5-year follow-up (p<0.05) (Table III).

Days of sickness allowance

During the year prior to the pretreatment phase, there were no statistically significant differences between the study groups in the number of sickness allowance days due to either spinal disorders, all musculoskeletal disorders, or all diseases (Table IV). In all groups average days of sickness allowance increased during the follow-up period when compared with the year prior to the pre-treatment phase. The increase in sickness allowance days for all diseases from pretreatment to the 2.5-year follow-up was greatest in the control group, which differed significantly from the inpatients (p<0.05) and not from the outpatients. There was also a non-significant tendency towards a difference between the inpatients and outpatients (X²(5) = -1.72, p<0.09) in the increase of sickness allowance days from pre-treatment to the 2.5-year follow-up.

The increase in days of sickness allowance due to all musculoskeletal disorders from the pre-treatment phase to the year prior to the 2.5-year follow-up was also greater in the control group than in the inpatient group (p<0.05), and a non-significant tendency to a corresponding difference between the inpatients and controls in days of sickness allowance due to spinal disorders was also evident (p<0.06).

Table II. Accomplishments of back exercises (%) by study group at the 1.5- and 2.5-year follow-ups, and statistical significances (p) of differences between the groups (χ²)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1-2</th>
<th>3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-year follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>16</td>
<td>63</td>
<td>0.0002</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
<td>21</td>
<td>51</td>
<td>0.02</td>
</tr>
<tr>
<td>All groups</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>2.5-year follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>17</td>
<td>8</td>
<td>75</td>
<td>0.0001</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>31</td>
<td>53</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Inpatient and outpatient treatment of low back pain

Table III. Frequency of back and relaxation exercises and compliance with ergonomic instructions (%) by study group at the 1.5- and 2.5-year follow-ups, and statistical significances (p) of differences between the groups (χ²)

<table>
<thead>
<tr>
<th></th>
<th>In-patients</th>
<th>Out-patients</th>
<th>Controls</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back exercises</td>
<td>1.5</td>
<td>73</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>a week</td>
<td>2.5</td>
<td>80</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Relaxation</td>
<td>1.5</td>
<td>29</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>at least once</td>
<td>2.5</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Compliance</td>
<td>1.5</td>
<td>88</td>
<td>86</td>
<td>75</td>
</tr>
<tr>
<td>with ergonomic</td>
<td>2.5</td>
<td>88</td>
<td>74</td>
<td>66</td>
</tr>
</tbody>
</table>

* Data gathered only from the two treated groups.

Table IV. Average days of sickness allowance due to all diseases, musculoskeletal disorders, and spinal disorders by study group at the pre-treatment examinations, and mean scores of the differences between pre-treatment and the 1.5-year and 2.5-year follow-ups

<table>
<thead>
<tr>
<th></th>
<th>Inpatients</th>
<th>Outpatients</th>
<th>Controls</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All diseases</td>
<td>8.8</td>
<td>9.3</td>
<td>8.8</td>
<td>NS</td>
</tr>
<tr>
<td>1.5 yrs vs. pretr.</td>
<td>+4.7</td>
<td>+4.3</td>
<td>+7.4</td>
<td>NS</td>
</tr>
<tr>
<td>2.5 yrs vs. pretr.</td>
<td>+3.8</td>
<td>+9.2</td>
<td>+12.0</td>
<td>NSp</td>
</tr>
<tr>
<td>Musculoskeletal disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>7.0</td>
<td>7.0</td>
<td>6.2</td>
<td>NS</td>
</tr>
<tr>
<td>1.5 yrs vs. pretr.</td>
<td>+2.4</td>
<td>-0.2</td>
<td>+6.9</td>
<td>NS</td>
</tr>
<tr>
<td>2.5 yrs vs. pretr.</td>
<td>+3.4</td>
<td>+5.9</td>
<td>+8.2</td>
<td>NSp</td>
</tr>
<tr>
<td>Spinal disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>5.2</td>
<td>6.0</td>
<td>3.7</td>
<td>NS</td>
</tr>
<tr>
<td>1.5 yrs vs. pretr.</td>
<td>+0.3</td>
<td>-0.2</td>
<td>+3.8</td>
<td>NS</td>
</tr>
<tr>
<td>2.5 yrs vs. pretr.</td>
<td>+1.6</td>
<td>+3.2</td>
<td>+4.8</td>
<td>NSp</td>
</tr>
</tbody>
</table>

* 1 vs. C: p < 0.05; 1 vs. O: p < 0.09.
* 4 vs. C: p < 0.05.
* 1 vs. O: p < 0.06.

Disability pensions

Altogether 45 subjects (10%) of the original sample had been granted a disability pension by June 1988. Ten per cent of the inpatients, 8% of the outpatients and 12% of the controls had received a disability pension during the average follow-up period of 4.5 years. The study groups did not differ on a statistically significant level from each other in the number of pensions granted.

DISCUSSION

The sample studied comprised chronic low back pain sufferers for whom the risk of long-term or permanent disability pensions...
could demonstrate three back exercises at the physiatrist's examination when compared with the outpatients and controls. Also the outpatients had learnt the exercises better than the controls (Table II).

The study groups also differed in the reported frequency of back exercises at both the 1.5-year and 2.5-year follow-ups. The inpatients reported having done their exercises more frequently than the outpatients ($p < 0.01$) and the controls ($p < 0.01$ and 0.05). The outpatients and controls did not differ significantly from each other (Table III).

Approximately 30% of the treated subjects reported having done relaxation exercises at least once a week during the month prior to the 1.5-year follow-up; the respective percentage was 51% at the 2.5-year follow-up. The groups did not differ in a statistically significant way from each other (Table III).

Most of the subjects, irrespective of study group, reported having followed ergogenic instructions at work. The inpatients differed significantly from the controls at both follow-ups ($p < 0.02$ and 0.001), and from the outpatients at the 2.5-year follow-up ($p < 0.01$). There was also a significant difference between the outpatients and controls at the 1.5-year follow-up ($p < 0.05$) (Table III).

Table II. Accomplishment of back exercises (%) by study group at the 1.5- and 2.5-year follow-ups, and statistical significances (p) of differences between the groups (χ^2)

<table>
<thead>
<tr>
<th>No. of faultless exercises</th>
<th>0</th>
<th>1-2</th>
<th>3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-year follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>16</td>
<td>65</td>
<td>0.0002</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
<td>21</td>
<td>51</td>
<td>0.02</td>
</tr>
<tr>
<td>All groups</td>
<td>44</td>
<td>19</td>
<td>37</td>
<td>0.001</td>
</tr>
<tr>
<td>2.5-year follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>8</td>
<td>84</td>
<td>0.0001</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>21</td>
<td>53</td>
<td>0.001</td>
</tr>
<tr>
<td>All groups</td>
<td>34</td>
<td>20</td>
<td>37</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table III. Frequency of back and relaxation exercises and compliance with ergonomic instructions (%) by study group at the 1.5- and 2.5-year follow-ups, and statistical significances (p) of differences between the three groups (χ^2)

<table>
<thead>
<tr>
<th>Back exercises at least once a week</th>
<th>Relaxation exercises at least once a week</th>
<th>Compliance with ergonomic instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatients</td>
<td>Outpatients</td>
<td>Controls</td>
</tr>
<tr>
<td>1.5</td>
<td>73</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>80</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>51</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>88</td>
</tr>
</tbody>
</table>

Table IV. Average days of sickness allowance due to all diseases, musculoskeletal disorders, and spinal disorders by study group at the pre-treatment examinations, and mean scores of the differences between pre-treatment and the 1.5-year and 2.5-year follow-ups

D I S C U S S I O N

The study comprised chronic low back pain sufferers for whom the risk of long-term or permanent disability pensions. Altogether 45 subjects (10%) of the original sample had been granted a disability pension by June 1988. Ten per cent of the inpatients, 8% of the outpatients and 12% of the controls had received a disability pension during the average follow-up period of 4.5 years. The study groups did not differ on a statistically significant level from each other in the number of pensions granted.

Significance tests were based on the data after logarithmic transformations.
disability due to LBP was higher than average. All subjects were at work at the time of the screening; although some subjects had been on extended sick-leave, the sample is unlikely to be directly comparable to patient, clinic population (17, 18, 23) or to patients attending multidisciplinary rehabilitation programmes (5, 6, 19), or those referred for treatment because of acute back pain (7).

Long-term follow-up studies are rare, due to the fact that they are generally expensive, as well as trying and burdensome for both subject and researchers. Subjects who drop out of the study form an additional problem. In our study the overall drop-out rate at the 2.5-year follow-up (15%) for self-assessments can be regarded as tolerable. In other controlled intervention studies drop-out rates have varied, for example, between 14% and 65% (7, 8, 19, 24, 26). The analysis of the subjects who dropped out of the present study revealed no such selection bias that would have a bearing on the between group differences in the outcome results. Furthermore, data on sickness allowances and disability pensions were obtained for all subjects in the original sample, which gives a solid basis for conclusions.

The results showed clear short-term (3-month) effects of both treatment modes after the first treatment programme, when compared with the control intervention (10). Subjective short-term effects of the refresher programme were not as clear: the effects of the refresher course could be seen only in the inpatients’ lowered level of back pain, but no significant improvement was evident in disability caused by LBP. The second treatment was substantially shorter than the first one, and this may have affected the self-assessments of back trouble, although respective physical measurements indicated a significant improvement in physical functions (21) after the refresher programme. As the present design was in this respect a new one, further analyses are needed before these controversial results can be interpreted.

In the average long-term changes in self-assessments there was a slight tendency that pain and disability had decreased more in the inpatient group when compared with the other two groups. In addition, a significantly greater proportion of the inpatients as compared with the controls could be classified in the clear gain group. While the criteria for a clear long-term gain, reflecting a “true” change (cf. 1), were purposely kept rather strict, these criteria were reached only by a quarter of all inpatients. The results are less favourable than, for instance, those obtained through more extensive and strenuous physical training programmes (e.g. 8, 19), where the subjects were, however, more severely disabled, and not directly comparable to our intervention. Furthermore, although days of sickness allowance had increased in all groups during the follow-up period, inpatient treatment seemed to have a slight buffering effect in this respect. Our results resemble those reported by Linton et al. (14), though in our study the follow-up period was remarkably longer. However, no between-group differences were evident in the number of disability pensions granted during the average 4.5-year follow-up period.

Finally, throughout the whole follow-up period of 2.5 years the study groups differed significantly from each other in compliance with self-care. The inpatients seemed to be more motivated to self-care and to have adopted a more or less regular way of coping with their back pain through back exercises. Also the outpatients seemed to have learnt these instructions better than the controls. The results confirm those reported earlier from the short-term outcome (10) more instructing without guided practice is not sufficient for the learning of self-care skills and their maintenance. Still, it seems that in the present subject sample, with moderate symptoms and currently in physically strenuous work, a more or less frequent self-care after the treatment was not effective enough to maintain short-term treatment gains brought about by the first treatment programme.

To conclude, the overall results showed that occasional back treatment periods were not especially more efficient in preventing or slowing down the subjective disability process than repeated physical check-ups and self-care instructions. The treatment seemed, however, to produce short-term improve- ments in the subjects’ back trouble, offer short-term relief from pain, and, for the inpatients, rest and relief from daily work stress. The treatment gives also a better opportunity for learning basic pain-management skills. The results did not, however, yield information on what were the essential components in the treatment that brought about the short-term improve- ments, or what aspects in the subjects’ self-care would have been crucial in producing favourable long-term effects. One of the main tasks, in the future, thus seems to lie in finding out and developing feasible methods for the maintenance and improvement of the treatment gains. For those at risk for bad back pain, an intensive treatment period may be useful as a part of a more comprehensive preventive plan, but not as a sole means for solving the back problem. As low back trouble is regarded as a multifaceted problem, regular check-ups and group exercises and discussions are probably needed to enable our sample to take care of their back pain and physical activity (14) and encourage pain self-management, together with improvements and advancements in work methods and working environment.

ACKNOWLEDGEMENTS

The authors thank the other members of the project group, especially J. Luoma, U.-M. Nurminen, P. Mykkänen, T. Ny- mark, and V. Kinnunen, for their invaluable contributions to data collection and analysis. They also thank the staffs of the various occupational health care units, local health centres, and the Siurikuja Spa and Siljängårn Rehabilitation Center for their active participation. Also they thank the supervisor group appointed by the Ministry of Social Affairs and Health of Finland for its support.

The study was supported by the RAY of Finland and the Social Insurance Institution in Finland.

REFERENCES

disability due to LBP was higher than average. All subjects were at work at the time of the screening; although some subjects had been on extensive sick-leaves, the sample is directly comparable to, for instance, pain clinic populations (17, 18, 23) and to patients attending multidisciplinary rehabilitation programs (5, 6, 19), or those referred for treatment because of acute back pain (7).

Long-term follow-up studies are rare, due to the fact that they are generally expensive, as well as trying and burdensome for both subjects and researchers. Subjects who drop out of the study form an additional problem. In our study the overall drop-out rate at the 2.5-year follow-up (15%) for self-assessments can be regarded as tolerable. In other controlled intervention studies drop-out rates have varied, for example, between 14% and 65% (7, 8, 19, 24, 26). The analysis of the subjects who dropped out of the present study revealed no such selection bias that would have a bearing on the between group differences in the outcome results. Furthermore, data on sickness allowances and disability pensions were obtained for all subjects in the original sample, which gives a solid basis for conclusions.

The results showed clear short-term (3-month) effects of both treatment modalities following the first treatment programme, when compared with the control intervention (10). Subjective short-term effects of the refresher programme were not as clear: the effects of the refresher course could be seen only in the patients' lowered level of back pain, but no significant improvement was evident in disability caused by LBP. The second treatment was substantially shorter than the first one, and this may have affected the subjective assessments of back trouble, although respective physical measurements indicated a significant improvement in physical functions (21) after the refresher programme. As the present design was in this respect a new one, further analyses are needed before these controversial results can be interpreted.

In the average long-term changes in self-assessments there was a slight tendency that pain and disability had decreased more in the inpatient group when compared with the other two groups. In addition, a significantly greater proportion of the inpatients as compared with the controls could be classified in the clear gain group. While the criteria for a clear long-term gain, reflecting a "true" change (cf. 14), were purposely kept rather strict, these criteria were reached only by a quarter of all inpatients. The results are less favourable than, for instance, those obtained through more extensive and strenuous physical training programmes (e.g. 8, 19), where the subjects were, however, more severely disabled, and not directly comparable to, for instance, pain clinic populations (17, 18, 23) and to patients attending multidisciplinary rehabilitation programs (5, 6, 19), or those referred for treatment because of acute back pain (7).

Furthermore, although days of sickness allowance had increased in all groups during the follow-up period, inpatient treatment seemed to have a slight buffering effect in this respect. Our results resemble those reported by Linton et al. (14), though in our study the follow-up period was remarkably longer. However, no between-group differences were evident in the number of disability pensions granted during the average 4.5-year follow-up period.

Finally, throughout the whole follow-up period of 2.5 years the study groups differed significantly from each other in compliance with self-care. The inpatients seemed to be more motivated to self-care and to have adopted a more or less regular way of coping with their back pain through back exercises. Also the outpatients seemed to have learnt these instructions better than the controls. The results confirm those reported earlier from the short-term outcome (10): more instructing without guided practice is not sufficient for the learning of self-care skills and their maintenance. Still, it seems that in the present subject sample, with moderate symptoms and currently in physically strenuous work, a more or less frequent self-care after the treatment was not effective enough to maintain short-term treatment gains brought about by the first treatment programme.

To conclude, the overall results showed that occasional back treatment periods were not essentially more effective in preventing or slowing down the subjective disability process than repeated physical check-ups and self-care instructions. The treatment seemed, however, to produce short-term improvement in the subjects’ back trouble, offer short-term relief from pain, and, for the inpatients, rest and relief from daily work stress. The treatment gives also a better opportunity for learning basic pain-management skills. The results did not, however, yield information on what were the essential components in the treatment that brought about the short-term improvement, or what aspects in the subjects’ self-care would have been crucial in producing favourable long-term effects. One of the main tasks, in the future, thus seems to lie in finding out and developing feasible methods for the maintenance and improvement of treatment gains. For those at risk or back disability an intensive treatment period may be useful as a part of a more comprehensive preventive plan, but not as a sole means for solving the back problem. As long low trouble is regarded as a multifaceted problem, regular check-ups and group exercises and discussions are probably needed to maintain our sample’s self-care and physical activity (14) and encourage pain self-management, together with improvements and advancements in work methods and working environment.

ACKNOWLEDGEMENTS

The authors thank the other members of the project group, especially J. Luoma, U-M. Nurminen, P. Mykkilä, T. Nymark, and V. Kallio, for their invaluable contributions to data collection and analysis. They also thank the staffs of the various occupational health care units, local health centres, and the Siirunpää and Sillitärvi Rehabilitation Center for their active participation. Also they thank the supervisor group appointed by the Ministry of Social Affairs and Health of Finland for its support.

The study was supported by the RAY of Finland and the Social Insurance Institution in Finland.

REFERENCES

Scand J Rehab Med 22
A CONTROLLED STUDY ON THE OUTCOME OF INPATIENT AND OUTPATIENT TREATMENT OF LOW BACK PAIN

Part IV. Long-term Effects on Physical Measurements

Guy Mellin, Kristiina Härkölä, Heikki Hurri and Aila Järvi-Koski
From the Rehabilitation Foundation, Helsinki, Finland

ABSTRACT. Effects of inpatient and outpatient treatment on physical measurements in chronic low back pain patients (n=476) were analyzed at 1.5 and 2.5 year follow-ups as well as 3 months after a refresher programme which was carried out 1.5 years after the first treatment. Physical measurements consisted of hip and lumbar spinal mobility, and trunk muscle strength. At the 1.5 year follow-up the two treatment groups did not differ from the control group, but at the 2.5 year follow-up inpatients showed better improvements in physical functions from the pretreatment level. The refresher treatment was found to improve physical functions more effectively than the first treatment program, especially in the outpatients. Self-care with heavy exercising was related to the improvement of physical functions, but back exercises and light exercises were not. Statistically significant but modest correlations were found between improved physical functions and subjective progress during the long-term follow-ups.

Key words: low back pain, outcome of treatment, physical measurements, physical exercise.

Physical exercise constitutes an important part of conservative management of chronic low back pain. Rehabilitative and preventive benefits of improved physical functions has been suggested by different studies (1, 2, 9, 10), but definitive proofs of their effects are still lacking. Although exercise during treatment improves physical functions, instruction and motivation for effective exercise during treatment is probably more important. Physical measurements carried out soon after treatment reveal the efficacy of exercise during treatment, but long-term follow-ups probably reflect changes of clinical relevance better in the long run. Only a few studies (3, 4, 7, 8, 9) on low back pain treatment report long-term (more than a couple of months) follow-ups of physical measurements; three studies on intensive training (3, 8, 9) and one on back school (4) found improvements. Two of these studies (4, 8) used a control group.

This paper presents results on physical measurements 1.5 and 2.5 years after a treatment of chronic low back pain as well as results 3 months after a refresher treatment. In addition, connections of changes in physical measurements with subjective progress and physical exercise after treatment are studied. Long-term follow-up results on pain, disability, and compliance with self-care are presented in another paper (6).

MATERIAL AND METHODS

Subjects
The subjects suffered from chronic or recurrent low back pain, although they were currently at work. Selection criteria and a detailed description of the subjects and the procedure of the study have been presented earlier (5). The subjects were randomly assigned to inpatient, outpatient and control groups. Of the original sample of 476 subjects, 415 and 402 joined the 1.5 and 2.5 year follow-ups, respectively. Only the treatment group (n=223) took part in the follow-up after the refresher programme (22-month follow-up).

Back treatment
The first inpatient treatment was a 3-week programme and the first outpatient treatment comprised 15 sessions. The refresher treatment was 2 weeks and 8 sessions, respectively. Both in- and outpatient treatments consisted of heat and electrotherapy, back exercises, back school and relaxation exercises. In addition, inpatients received massage and took part in physical exercises and muscle strength exercises. The number of these treatments has been presented earlier (3). The contents of the refresher treatment, carried out after the 1.5 year follow-up, corresponded to that of the first treatment, but the total number was about 60% for inpatients and 50% for outpatients.

The control group received no systematic treatment, but the patients were given written and oral instructions on back exercises and ergonomics at the beginning of and during the study.