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LAY ABSTRACT
One major impairment caused by stroke is an affec-
ted walking ability, which is strongly dependent on 
the location and extent of the damage. Because of 
the wide spectrum of complex pathological movement 
patterns, patients benefit from personalized rehabilita-
tion programs. Mobility assessment by experts from 
different medical disciplines has been shown to con-
tribute considerably to these objectives. We present 
machine-learning models that can reconstruct expert 
mobility assessment. Moreover, we demonstrate that 
the “reasoning” of the models can be explained to an 
important extent. This allows the models to communi-
cate with the experts and hence support them by gran-
ting them quantitative access to their own qualitative 
reasoning. This synergy could improve the long-term 
performance of both models and experts, thus leading 
to a more objective and effective rehabilitation therapy.

Objective: Long-term mobility impairment is a sequel 
of stroke victims which requires intensive medical 
and physiotherapeutic care. Detailed assessment of 
therapeutic success is relevant to achieving efficacy, 
but requires expert knowledge, since mobility disor-
ders are complex. Increasing shortage of qualified 
staff and larger numbers of patients are thus major 
problems in this field. To meet these challenges, we 
show that machine learning algorithms can repro-
duce expert mobility assessment from gait data with 
acceptable accuracy, supporting poststroke evalua-
tion while giving intelligible feedback into how the 
assessments were generated.
Methods: A total of 100 hemiparetic stroke patients 
received clinical examinations followed by instru-
mented gait analysis and were assigned a Stroke 
Mobility Score by an interdisciplinary expert board. 
From each measured stride pair, 680 features 
were extracted. After removing non-discriminating 
features, two regression models were trained: a 
decision tree and a multilayer perceptron artificial 
neural network.
Results: The models yielded good to very good 
(Cohen) coefficients of determination. The inter-
pretable decision-trees and the explanations obtai-
ned from the neural network unveiled key features 
supporting the mobility assessments.
Conclusion: The automated assessments agree well 
with those of the experts. Synergistic interactions 
between system, and experts via the computed 
key features may improve quality in diagnosis and 
objectify therapeutic targets.

Key words: automated poststroke mobility assessment; deci-
sion trees; deep learning; gait analysis; stroke rehabilitation
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Mobility recovery and, hence, accurate mobility 
assessment, is essential in poststroke rehabilita-

tion (1, 2). Currently, poststroke mobility is assessed 
via medical history and qualitative observational exami-
nations performed by trained clinicians from different 
disciplines (neurology, orthopaedics, physiotherapy, 
orthotics). Such subjective examinations may yield weak 
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reliability, sensitivity, and specificity (3), since they are 
based on the discipline-specific expertise of each clinician 
(4). Moreover, such interdisciplinary assessments are 
too resource-intensive to be applicable for therapeutic 
monitoring.

Instrumented gait analysis allows for an objective and 
reliable mobility examination via spatiotemporal, kine-
matic, and kinetic gait measurements (3). While accurate 
motion-capture systems currently require a laboratory 
and trained personnel, current trends promise easy-to-use 
wearables that yield similar data from simpler measure-
ments (3). However, the translation of gait data into medi-
cal assessments remains a challenge because of the data’s 
high resolution and dimensionality, which traditional 
statistical approaches are unable to handle (5). Artificial 
intelligence (AI) systems are a promising tool for meeting 
this challenge (3, 6–8).

In medical applications, however, there is a sensible 
reluctance to use AI systems for diagnosis due to their 
lack of interpretability (9–11). Explainable artificial intel-
ligence techniques are emerging as an interface between 
AI systems and medical experts. Some examples are des-
cribed in (10, 12, 13). These systems have the potential 
not only to support the user but also to offer an objec-
tive insight into the user’s own reasoning, which might 
enhance the user’s own assessments. In fact, AI may pre-
sent to be an indispensable training tool, as it does for 
non-medical purposes such as gaming (14).

This study tests the performance and interpretability/
explainability [as defined in (13)] of AI-driven poststroke 
mobility assessment based on instrumented gait analysis 
and interdisciplinary expert knowledge. To this end, the 
gait of 100 hemiparetic stroke patients was measured 
using a motion-capture system and video cameras, simul-
taneously. The video material was evaluated by a medical 
board of interdisciplinary experts via the Stroke Mobility 
Score (SMS), a multiple-cue observational clinical score 
designed for this purpose (2). The motion-capture data 
was used to train an interpretable decision-tree (DT) reg-
ression model as well as an explainable multilayer per-
ceptron (MLP) artificial neural network to reproduce the 
expert board assessments from the measurements.

METHODS

Participants and gait data collection

A total of 100 hemiparetic stroke patients underwent a stan-
dard neurological examination and a full-body instrumented 
gait analysis, carried out on a straight 10-meter indoor walk-
way with a Vicon 3D motion capture system consisting of 
10 marker-tracking cameras (100 Hz, Oxford Metrics Ltd., 
Oxford, England), and two video cameras (100 Hz, Basler AG, 
Ahrensburg, Germany) aligned along and perpendicular to the 
walkway. Reflective markers were attached to the patient accor-
ding to the full-body Plug-in-Gait marker set (15). During the 
recordings, the patients walked at a self-selected pace barefoot 
or with shoes, wearing only underwear, and if necessary, aided 

with a walking cane or an ankle-foot orthosis (AFO). For each 
patient, at least four trials were recorded, each trial containing at 
least two consecutive strides.

The data was collected within 2 multidisciplinary research 
projects: “ReHabX-Stroke: Personalized therapy planning of 
gait disorders based on the example of stroke” (2012–2015) (16) 
and “RehaBoard: A computer assistance system for the interdis-
ciplinary treatment planning of gait impairments after stroke” 
(2017–2020) (17). The inclusion criteria for the study popula-
tion can be found in (2), where the same database is used to 
develop the SMS.

Gait data processing

The motion-capture data was processed by the software Vicon 
Nexus 2 and post-processed by the software MobileBody (18). 
Nexus 2 delivered all Plug-in-Gait segment poses as well as the 
standard gait events (foot strike, foot off) while MobileBody 
interpolated the absolute pose of the Plug-in-Gait segments and 
computed the relative angles at the biomechanical joints, as 
well as their derivatives with respect to the gait-cycle progress. 
These derivatives correspond to the normalized angular veloci-
ties (NAVs) first introduced in (19). A NAV quantifies the slope 
of the tangent to the corresponding relative-angle progression, 
thus describing the shape of its plot.

Expert board mobility assessment

The video camera data was evaluated by a medical board consis-
ting of 5 experts from the fields of neurology (2x), orthopedics, 
physiotherapy, and orthotics. The expert board assigned each 
patient an SMS. As described in (2), the SMS is composed of 
six subscores corresponding to the functional criteria [1] trunk 
posture, [2] leg movement, [3] arm movement, [4] gait speed, 
[5] gait fluency, and [6] stability of walking on flat ground /risk 
of falling, which are here referred to as the Trunk-, Leg-, Arm-, 
Speed-, Fluency-, and Stability-SMS. Each subscore comprises 
4 simple scoring descriptions from 0 (no pathological findings) 
to 3 (significant pathological findings), yielding an SMS lying 
between 0 (no findings) and 18 (most critical). After inspec-
ting the video recordings (frontal- and sagittal-plane views) of 
a patient’s trial selected by chance, each expert board member 
recommended a value for every subscore. The expert board sub-
score was computed as the mode of all expert recommendations. 
If the mode could not be defined, the subscore not in contention 
for the highest count was used as a tiebreaker. The tiebreaker 
either served as a compromise, if situated between the other sub-
scores sharing the highest count, or as a weight, if found on one 
side of the balance. For example, the subscores {1, 1, 2, 3, 3} 
yield an expert board subscore of 2, the subscores {0, 1, 1, 2, 2} 
yield a 1, and the subscores {1, 1, 2, 2, 3} yield a 2.

Reconstruction of the expert board mobility assessment

Even though the expert board mobility assessment was perfor-
med at patient level by considering only one trial per patient, the 
machine-learning (ML) models were trained at stride pair level 
to use as many datapoints as possible. Every measured pair of 
consecutive ipsilateral and contralateral strides (stride pair) was 
coupled with the corresponding patient’s expert board subsco-
res. The ipsilateral and contralateral sides of each patient were 
obtained from the case report files. The reconstruction of each 
subscore was performed as follows.
Feature extraction. A total of 339 features were extracted from 
the gait data of each stride. They comprise 15 gait parameters (12 
standard gait parameters according to (20, 21) and in addition 
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the duration of the stance phase as well as start and duration 
of the swing phase) and 324 features describing the relative 
angles at the biomechanical joints. The latter correspond to the 
numerical characterizations of movement introduced in (19) and 
are based on the descriptive statistics (minimum, median, and 
maximum values) of the relative angles and their corresponding 
normalized velocities, at the stance phase, swing phase, and the 
whole gait cycle (Fig. 1). Additionally, the usage of a walking 
aid was characterized with a 0 if no walking aid was used, and 
otherwise with a 1. The resulting 680 features for each stride 
pair are summarized in Table I.
Training and test datasets. The total dataset was split into 
training (70%) and test (30%) datasets in a stratified manner to 
reduce class imbalances (22), using the SMS to define the strata 
while ensuring that all the stride pairs of each patient are contai-
ned in only one of the datasets.
Feature selection. Feature selection was performed in two steps. 
In a first step, expert knowledge was used to trim the feature set 
for each of the subscores based on their functional definitions 
(2), as shown in Table I. In a second step, the reduced feature 
sets were filtered using a measure of the strength with which 
each feature characterizes the subscore values assigned by the 
expert board. To this end, a representative stride pair was selec-
ted for every patient in the training dataset according to (23) to 
avoid selection bias (24). The selected stride pairs were grouped 
according to the subscore value assigned by the expert board to 
the corresponding patient, and the resulting groups were tested 
for statistical differences between the group mean values using 
an Alexander-Govern (AG) test (25). Features with p-values 
lower than 5% were retained in the reduced feature set.
Model selection. The model hyperparameters were selected 
by evaluating each hyperparameter combination (grid search) 
with a 10-fold cross-validation to select the hyperparameters 
that maximize the cross-validation estimate of the coefficient of 

determination R2. At each cross-validation iteration, the repre-
sentative stride pairs used during feature selection were exclu-
ded from the held-out validation datasets and instead reinserted 
into the training dataset to obtain an unbiased estimate while 
minimizing data loss (24). Furthermore, each stride pair was 
weighted to account for two sources of biases: the imbalanced 
distribution of the subscores, and the inhomogeneous number 
of stride pairs from each patient. To this end, the weight of each 
stride pair was computed as the ratio of the greatest number of 
stride pairs with the same subscore to the number of stride pairs 
with the stride pair’s subscore, divided by the number of stride 
pairs from the corresponding patient.

The DT model was implemented with scikit-learn (26) and 
is based on Breiman’s Classification and Regression Trees (27). 
The MLP model was implemented using the Tensorflow (28) 
framework, and Keras library via scikeras (26). The details of 
the procedure used for hyperparameter tuning are described in 
Table II.
Model training and testing. The optimal DT and MLP models 
were trained with the training dataset, then tested on the test data-
set at patient level, since the expert board subscores are meant to 
assess patients, not single stride pairs. To this end, the model out-
puts (subscores) were averaged across each patient’s stride pairs. 
If the subscore predictions lied outside their definition range, 
they were cut to the nearest boundary. The SMS predictions were 
computed as the sum of all the corresponding range-adjusted 
subscore predictions. Model performance was evaluated by com-
paring the expert board assessments with predictions, using the 
coefficient of determination R2 as performance metric.
Model interpretation and explanation. The optimal DT 
models were visualized as tree-structured decision chains 
allowing for interpretation, whereas the optimal MLP models 
were explained using permutation importance, which estima-
tes feature importance by randomly shuffling the values of a 

Fig. 1. Example of the numerical 
characterization (19) of the knee 
flexion/extension normalized 
with respect to a patient’s 
ipsilateral stride

https://medicaljournalssweden.se/jrm-cc


JRM-CC 2025, Vol. 8

p. 4 of 8 Intelligible AI-driven poststroke mobility assessment JRM–CC

feature and observing the resulting degradation of the model’s 
performance (26).

RESULTS
A total of 100 patients were included in this study, from 
which a total of 904 stride pairs were extracted. The 
training and test dataset consist of 633 stride pairs of 65 
patients and 271 stride pairs of 35 patients, respectively. 
All the steps were carried out on a 5.3 GHz Intel® Core™ 
i9-10900K with Python 3 and other libraries for appli-
cations in science and data analysis (e.g. SciPy, NumPy, 
pandas) (26, 28, 30–32).

Based on objective data from gait analysis and input 
from an interdisciplinary expert board, we trained ML 
models that predict SMS subscores with a large correla-
tion (33) to the expert board assessments (R2 > 0.25). The 
optimal model hyperparameters and the performance esti-
mates are shown in Table III.

The overall performance of the models is compa-
rable to the agreement of each expert recommenda-
tion with the collective decisions of the expert board 
(Figs 2 and 3). 

The DT models allow for a straightforward interpreta-
tion of the model decision-making process. Figure 4 pre-
sents the DT model for the Stability-SMS as an example. 
The DT models predicting all the SMS subscores are 
shown in Appendix A. The key features of the DT and the 
MLP models for the Stability-SMS are shown in Table IV. 
The key features of all SMS subscores can be found in 
Appendix A. 

The expert board assessments and the predictions of 
the trained models show a high degree of conformity. 
The key features delivered by the models hint at where 
to look in detail when assessing the mobility of a post-
stroke patient. For example, when assessing the risk of 
falling, the stance duration as well as the maximal rate 
of change (NAV) of the ipsilateral knee flexion and the 

Table II. Grid-search hyperparameter tuning of the decision-tree and multilayer perceptron regression models via a 10-fold cross 
validation procedure for each combination of hyperparameters. ReLU was used as activation function for every hidden unit of the 
multilayer perceptron model

RM Model hyperparameter Abbreviation Values examined

DT Number of features to consider during splitting at each 
tree node

DT-HP1 {n, n, log n}

Strategy used to choose the split at each tree node DT-HP2 Select split that best minimizes mean squared error from {all 
possible splits, randomly initialized splits} 

Minimum weight fraction at each tree node DT-HP3 {0.00, 0.01, 0.02, … , 0.05}
Maximum depth of the trees DT-HP4 {3, 4, 5} as recommended by (13)

MLP Number of hidden layers MLP-HP1 {2, 3} with hidden units {16, 8} and {32, 16, 8}, respectively
Activation function of the last output unit MLP-HP2 {linear, ReLU}
Learning rate of the Adam optimizer (29) MLP-HP3 {1 × 10−3, 1 × 10−4, 1 × 10−5}

If 1 × 10−5, try the following values for MLP-HP1 and MLP-HP2 fixed:
{7.5 × 10−5, 5.0 × 10−5, 2.5 × 10−5, 1.0 × 10−5, 7.5 × 10−6, 5.0 × 
10−6, 2.5 × 10−6}

DT: Decision tree; MLP: Multilayer perceptron artificial neural network; RM: Regression model; n: Total number of features; ReLU: Rectified linear unit.

Table I. Feature-extraction overview and manual feature selection (step 1) for each SMS subscore

Extracted features Feature selection (step 1)

680 features per stride pair:
• 30 gait parameters (15 parameters × 2 sides)
• � 648 numerical characterizations of movement (18 angles x 18 numerical 

characterizations × 2 sides)
• 2 walking-aid features

Trunk-
SMS

Leg- 
SMS

Arm-
SMS

Speed-
SMS

Fluency-
SMS

Stability-
SMS

Gait 
parameters

Standard Gait speed [m/s] X X X X X X
Cadence [steps/s] X X X X X X
Stride and step time [s] X X X X X
Single and double support duration time [s] X X X X X
Single and double support duration [%] X X X X X
(Height) Normalized step width [-] X X X X X
(Leg length) Normalized step and stride lengths [-] X X X X X
Limp index [-] X X X X X

Phase Start of swing phase [%] X X X X X
Duration of stance and swing phases [%] X X X X X

Numerical characterization 
of movement

Pelvis Orientation Tilt, Obliquity, Rotation X X X X
Thorax Orientation Tilt, Side Tilt, Rotation X X X X
Foot Orientation Progression X X X X
Hip Joint Flexion/Extension, Adduction/Abduction X X X X
Knee Joint Flexion/Extension X X X X
Ankle Joint Dorsiflexion/Plantarflexion, Inversion/Eversion X X X X
Spine Tilt, Side Tilt, Rotation X X X X
Shoulder Joint Flexion/Extension, Adduction/Abduction X X X X
Elbow Joint Flexion/Extension X X X X

Aid Walking Cane [-] {0: no usage, 1: usage} X X X X X X
AFO [-] {0: no usage, 1: usage} X X X X X X

SMS: Stroke Mobility Score; AFO: Ankle-foot orthosis.
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contralateral hip flexion angles during stance are most 
relevant (Table IV).

DISCUSSION
The SMS and the Stability-SMS models perform very well 
(R2 > 0.8), while the other models perform well (R2 > 0.5) 
(Table III). The performances correlate strongly [Cohen 
(33), p = 0.02, r = 0.83] with the corresponding inter-rater 
reliabilities ICC1.1. A high ICC1.1 implies a high degree 

of agreement among the experts, thus naturally resulting 
in models with higher robustness and consistency with 
ground truth. 

Not all individual subscore models performed perfectly 
well. However, they compensated each other for the SMS. 
Using similar feature extraction and selection methods, 
we experimented with DT and MLP models that directly 
predict the SMS. While the DT model performed slightly 
worse (R2 = 0.79), the MLP model showed a similar perfor-
mance (R2 = 0.87).

Table III. Optimal model hyperparameters of each SMS-subscore decision-tree and multilayer perceptron regression models, their 
performance on the test dataset in terms of the coefficient of determination R2, and the corresponding interrater reliabilities ICC1.1 of 
the expert board assessments

SMS subscore Feature subset

Optimal Model Hyperparameters R2 ICC1.1

DT MLP DT MLP Board

Trunk posture 241 of 680 features DT-HP1: n MLP-HP1: 3 0.37 0.58 0.65
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.03 MLP-HP3: 2.5e-05
DT-HP4: 5

Leg movement 188 of 356 pre-selected features DT-HP1: n MLP-HP1: 3 0.51 0.59 0.73
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.02 MLP-HP3: 1e-05
DT-HP4: 5

Arm movement 99 of 330 pre-selected features DT-HP1: n MLP-HP1: 3 0.40 0.61 0.72
DT-HP2: Random MLP-HP2: ReLU
DT-HP3: 0.03 MLP-HP3: 1e-03
DT-HP4: 5

Gait speed 31 of 32 pre-selected features DT-HP1: n MLP-HP1: 2 0.77 0.77 0.72
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.03 MLP-HP3: 1e-04
DT-HP4: 5

Gait fluency 263 of 680 features DT-HP1: n MLP-HP1: 2 0.54 0.76 0.72
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.01 MLP-HP3: 1e-03
DT-HP4: 5

Stability of walking 
on flat ground/risk 
of falling

238 of 680 features DT-HP1: n MLP-HP1: 2 0.86 0.85 0.83
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.02 MLP-HP3: 1e-03
DT-HP4: 5

Collection of SMS subscore models combined to predict the SMS 0.82 0.87 0.88

SMS: Stroke Mobility Score; DT: Decision tree; MLP: Multilayer perceptron artificial neural network; R2: Coefficient of determination; DT-HP1, DT-HP2, DT-HP3, 
DT-HP4, MLP-HP1, MLP-HP2, MLP-HP3: See Table II.

Fig. 2. Scatterplots showing how the individual experts compare with the expert board mobility assessment (abscissa) for the SMS of the training 
dataset (left) and the test dataset (right)
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The DT models produced two underpredicted out-
liers (see Fig. 3 at an expert board mobility assess-
ment of 9). As explained in detail in Appendix B, both 
patients exhibit outlying walking speeds, which led to a 
false estimation of the Leg-SMS and Arm-SMS scores. 

The overall key features consist of 46% ipsilateral and 
54% contralateral features for the DT models, and 53% 
ipsilateral and 47% contralateral features for the MLP 
models. This shows the importance of regarding the cont-
ralateral side, which is often neglected during patient 
assessment and stroke rehabilitation (34, 35), thus confir-
ming studies that show bilateral impairment of the upper 
and lower extremities poststroke (36). Furthermore, the 
NAVs make up a large percentage of the top features, 
namely 20 and 73% for the DT and MLP model, respec-
tively. This suggests that not only descriptive values but 

also the shape of the joint angle progressions are important 
for mobility assessment.

In this work, key features were unveiled globally, that 
is, for the whole training dataset. It is also possible to use 
local explainers to obtain key features with respect to a 
particular stride pair (13, 37, 38). An example on how 
Shapley Additive Explanations (SHAP) may be used can 
be found in Appendix C. Together, global and local key 
features mirroring expert assessment can improve the 
understanding of mobility disorder.

In conclusion, the SMS prescribed by an interdiscipli-
nary expert board can be reproduced very well from gait 
data using interpretable DT and explainable MLP models. 

The SMS has proven to be an excellent score for 
AI-driven poststroke mobility assessment based on gait 
data. Its subscore structure allows for a nuanced clinical 

Fig. 4. Decision tree model predicting for the Stroke Mobility Score –Stability

Fig. 3. Scatterplots showing how the trained decision-tree models (left) and multilayer perceptron models (right) compare with the expert board 
mobility assessment (abscissa) for the Stroke Mobility Score
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assessment of the different functional aspects of gait, 
which supports a detailed interpretation/explanation of 
the AI models.

Overall, this work shows that it is possible to build an 
intelligible AI-driven decision support system for post-
stroke mobility assessment. We believe that intelligibility is 
the key to a successful deployment of such a system, since 
the identification of the key features used by the AI models 
to make their predictions may lead to a more objective and 
effective identification of therapeutic targets.
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