VOL. 8, 2025

JOURNAL OF
REHABILITATION MEDICINE
CLINICAL
COMMUNICATIONS
ARTICLE 42379

ORIGINAL REPORT
AN INTELLIGIBLE AI-DRIVEN DECISION SUPPORT SYSTEM FOR POSTSTROKE

MOBILITY ASSESSMENT

Jin Cheng LIAW, MSc!, Dominik RAAB, PhD!, Malte WEBER, MSc!, Mario SIEBLER, PhD?3, Harald HEFTER, PhD?, Dérte
ZIETZ, PhD*, Marcus JAGER, PhD5¢, Andrés KECSKEMETHY, PhD! and Francisco GEU FLORES, PhD!

From the Chair of Mechanics and Robotics, University of Duisburg-Essen, Duisburg, Germany, *Mediclin Rehabilitationsforschung gGmbH, Offenburg,
Germany, *Department of Neurology, University Hospital Disseldorf, Disseldorf, Germany, *Department of Applied Health Sciences - Physiotherapy,
University of Applied Sciences Bochum, Bochum, Germany, *Department of Orthopedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Milheim
an der Ruhr, Milheim an der Ruhr, Germany and ¢Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany

Objective: Long-term mobility impairment is a sequel
of stroke victims which requires intensive medical
and physiotherapeutic care. Detailed assessment of
therapeutic success is relevant to achieving efficacy,
but requires expert knowledge, since mobility disor-
ders are complex. Increasing shortage of qualified
staff and larger numbers of patients are thus major
problems in this field. To meet these challenges, we
show that machine learning algorithms can repro-
duce expert mobility assessment from gait data with
acceptable accuracy, supporting poststroke evalua-
tion while giving intelligible feedback into how the
assessments were generated.

Methods: A total of 100 hemiparetic stroke patients
received clinical examinations followed by instru-
mented gait analysis and were assigned a Stroke
Mobility Score by an interdisciplinary expert board.
From each measured stride pair, 680 features
were extracted. After removing non-discriminating
features, two regression models were trained: a
decision tree and a multilayer perceptron artificial
neural network.

Results: The models yielded good to very good
(Cohen) coefficients of determination. The inter-
pretable decision-trees and the explanations obtai-
ned from the neural network unveiled key features
supporting the mobility assessments.

Conclusion: The automated assessments agree well
with those of the experts. Synergistic interactions
between system, and experts via the computed
key features may improve quality in diagnosis and
objectify therapeutic targets.

Key words: automated poststroke mobility assessment; deci-
sion trees; deep learning; gait analysis; stroke rehabilitation
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/LAY ABSTRACT )

One major impairment caused by stroke is an affec-
ted walking ability, which is strongly dependent on
the location and extent of the damage. Because of
the wide spectrum of complex pathological movement
patterns, patients benefit from personalized rehabilita-
tion programs. Mobility assessment by experts from
different medical disciplines has been shown to con-
tribute considerably to these objectives. We present
machine-learning models that can reconstruct expert
mobility assessment. Moreover, we demonstrate that
the “reasoning” of the models can be explained to an
important extent. This allows the models to communi-
cate with the experts and hence support them by gran-
ting them quantitative access to their own qualitative
reasoning. This synergy could improve the long-term
performance of both models and experts, thus leading
@ a more objective and effective rehabilitation therapy
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Mobility recovery and, hence, accurate mobility
assessment, is essential in poststroke rehabilita-
tion (1, 2). Currently, poststroke mobility is assessed
via medical history and qualitative observational exami-
nations performed by trained clinicians from different
disciplines (neurology, orthopaedics, physiotherapy,
orthotics). Such subjective examinations may yield weak
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reliability, sensitivity, and specificity (3), since they are
based on the discipline-specific expertise of each clinician
(4). Moreover, such interdisciplinary assessments are
too resource-intensive to be applicable for therapeutic
monitoring.

Instrumented gait analysis allows for an objective and
reliable mobility examination via spatiotemporal, kine-
matic, and kinetic gait measurements (3). While accurate
motion-capture systems currently require a laboratory
and trained personnel, current trends promise easy-to-use
wearables that yield similar data from simpler measure-
ments (3). However, the translation of gait data into medi-
cal assessments remains a challenge because of the data’s
high resolution and dimensionality, which traditional
statistical approaches are unable to handle (5). Artificial
intelligence (AI) systems are a promising tool for meeting
this challenge (3, 6-8).

In medical applications, however, there is a sensible
reluctance to use Al systems for diagnosis due to their
lack of interpretability (9—11). Explainable artificial intel-
ligence techniques are emerging as an interface between
Al systems and medical experts. Some examples are des-
cribed in (10, 12, 13). These systems have the potential
not only to support the user but also to offer an objec-
tive insight into the user’s own reasoning, which might
enhance the user’s own assessments. In fact, Al may pre-
sent to be an indispensable training tool, as it does for
non-medical purposes such as gaming (14).

This study tests the performance and interpretability/
explainability [as defined in (13)] of Al-driven poststroke
mobility assessment based on instrumented gait analysis
and interdisciplinary expert knowledge. To this end, the
gait of 100 hemiparetic stroke patients was measured
using a motion-capture system and video cameras, simul-
taneously. The video material was evaluated by a medical
board of interdisciplinary experts via the Stroke Mobility
Score (SMS), a multiple-cue observational clinical score
designed for this purpose (2). The motion-capture data
was used to train an interpretable decision-tree (DT) reg-
ression model as well as an explainable multilayer per-
ceptron (MLP) artificial neural network to reproduce the
expert board assessments from the measurements.

METHODS

Participants and gait data collection

A total of 100 hemiparetic stroke patients underwent a stan-
dard neurological examination and a full-body instrumented
gait analysis, carried out on a straight 10-meter indoor walk-
way with a Vicon 3D motion capture system consisting of
10 marker-tracking cameras (100 Hz, Oxford Metrics Ltd.,
Oxford, England), and two video cameras (100 Hz, Basler AG,
Ahrensburg, Germany) aligned along and perpendicular to the
walkway. Reflective markers were attached to the patient accor-
ding to the full-body Plug-in-Gait marker set (15). During the
recordings, the patients walked at a self-selected pace barefoot
or with shoes, wearing only underwear, and if necessary, aided

with a walking cane or an ankle-foot orthosis (AFO). For each
patient, at least four trials were recorded, each trial containing at
least two consecutive strides.

The data was collected within 2 multidisciplinary research
projects: “ReHabX-Stroke: Personalized therapy planning of
gait disorders based on the example of stroke” (2012-2015) (16)
and “RehaBoard: A computer assistance system for the interdis-
ciplinary treatment planning of gait impairments after stroke”
(2017-2020) (17). The inclusion criteria for the study popula-
tion can be found in (2), where the same database is used to
develop the SMS.

Gait data processing

The motion-capture data was processed by the software Vicon
Nexus 2 and post-processed by the software MobileBody (18).
Nexus 2 delivered all Plug-in-Gait segment poses as well as the
standard gait events (foot strike, foot off) while MobileBody
interpolated the absolute pose of the Plug-in-Gait segments and
computed the relative angles at the biomechanical joints, as
well as their derivatives with respect to the gait-cycle progress.
These derivatives correspond to the normalized angular veloci-
ties (NAVs) first introduced in (19). A NAV quantifies the slope
of the tangent to the corresponding relative-angle progression,
thus describing the shape of its plot.

Expert board mobility assessment

The video camera data was evaluated by a medical board consis-
ting of 5 experts from the fields of neurology (2x), orthopedics,
physiotherapy, and orthotics. The expert board assigned each
patient an SMS. As described in (2), the SMS is composed of
six subscores corresponding to the functional criteria [1] trunk
posture, [2] leg movement, [3] arm movement, [4] gait speed,
[5] gait fluency, and [6] stability of walking on flat ground /risk
of falling, which are here referred to as the Trunk-, Leg-, Arm-,
Speed-, Fluency-, and Stability-SMS. Each subscore comprises
4 simple scoring descriptions from 0 (no pathological findings)
to 3 (significant pathological findings), yielding an SMS lying
between 0 (no findings) and 18 (most critical). After inspec-
ting the video recordings (frontal- and sagittal-plane views) of
a patient’s trial selected by chance, each expert board member
recommended a value for every subscore. The expert board sub-
score was computed as the mode of all expert recommendations.
If the mode could not be defined, the subscore not in contention
for the highest count was used as a tiebreaker. The tiebreaker
either served as a compromise, if situated between the other sub-
scores sharing the highest count, or as a weight, if found on one
side of the balance. For example, the subscores {1, 1, 2, 3, 3}
yield an expert board subscore of 2, the subscores {0, 1, 1,2, 2}
yield a 1, and the subscores {1, 1,2, 2, 3} yield a 2.

Reconstruction of the expert board mobility assessment

Even though the expert board mobility assessment was perfor-
med at patient level by considering only one trial per patient, the
machine-learning (ML) models were trained at stride pair level
to use as many datapoints as possible. Every measured pair of
consecutive ipsilateral and contralateral strides (stride pair) was
coupled with the corresponding patient’s expert board subsco-
res. The ipsilateral and contralateral sides of each patient were
obtained from the case report files. The reconstruction of each
subscore was performed as follows.

Feature extraction. A total of 339 features were extracted from
the gait data of each stride. They comprise 15 gait parameters (12
standard gait parameters according to (20, 21) and in addition
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the duration of the stance phase as well as start and duration
of the swing phase) and 324 features describing the relative
angles at the biomechanical joints. The latter correspond to the
numerical characterizations of movement introduced in (19) and
are based on the descriptive statistics (minimum, median, and
maximum values) of the relative angles and their corresponding
normalized velocities, at the stance phase, swing phase, and the
whole gait cycle (Fig. 1). Additionally, the usage of a walking
aid was characterized with a 0 if no walking aid was used, and
otherwise with a 1. The resulting 680 features for each stride
pair are summarized in Table .

Training and test datasets. The total dataset was split into
training (70%) and test (30%) datasets in a stratified manner to
reduce class imbalances (22), using the SMS to define the strata
while ensuring that all the stride pairs of each patient are contai-
ned in only one of the datasets.

Feature selection. Feature selection was performed in two steps.
In a first step, expert knowledge was used to trim the feature set
for each of the subscores based on their functional definitions
(2), as shown in Table I. In a second step, the reduced feature
sets were filtered using a measure of the strength with which
each feature characterizes the subscore values assigned by the
expert board. To this end, a representative stride pair was selec-
ted for every patient in the training dataset according to (23) to
avoid selection bias (24). The selected stride pairs were grouped
according to the subscore value assigned by the expert board to
the corresponding patient, and the resulting groups were tested
for statistical differences between the group mean values using
an Alexander-Govern (AG) test (25). Features with p-values
lower than 5% were retained in the reduced feature set.

Model selection. The model hyperparameters were selected
by evaluating each hyperparameter combination (grid search)
with a 10-fold cross-validation to select the hyperparameters
that maximize the cross-validation estimate of the coefficient of
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determination R. At each cross-validation iteration, the repre-
sentative stride pairs used during feature selection were exclu-
ded from the held-out validation datasets and instead reinserted
into the training dataset to obtain an unbiased estimate while
minimizing data loss (24). Furthermore, each stride pair was
weighted to account for two sources of biases: the imbalanced
distribution of the subscores, and the inhomogeneous number
of stride pairs from each patient. To this end, the weight of each
stride pair was computed as the ratio of the greatest number of
stride pairs with the same subscore to the number of stride pairs
with the stride pair’s subscore, divided by the number of stride
pairs from the corresponding patient.

The DT model was implemented with scikit-learn (26) and
is based on Breiman’s Classification and Regression Trees (27).
The MLP model was implemented using the Tensorflow (28)
framework, and Keras library via scikeras (26). The details of
the procedure used for hyperparameter tuning are described in
Table II.
Model training and testing. The optimal DT and MLP models
were trained with the training dataset, then tested on the test data-
set at patient level, since the expert board subscores are meant to
assess patients, not single stride pairs. To this end, the model out-
puts (subscores) were averaged across each patient’s stride pairs.
If the subscore predictions lied outside their definition range,
they were cut to the nearest boundary. The SMS predictions were
computed as the sum of all the corresponding range-adjusted
subscore predictions. Model performance was evaluated by com-
paring the expert board assessments with predictions, using the
coefficient of determination R? as performance metric.

Model interpretation and explanation. The optimal DT
models were visualized as tree-structured decision chains
allowing for interpretation, whereas the optimal MLP models
were explained using permutation importance, which estima-
tes feature importance by randomly shuffling the values of a

Minimum angle during stance
Median angle during stance
Maximum angle during stance

Minimum angle during swing
Median angle during swing
Maximum angle during swing

Minimum angle during gait cycle
Median angle during gait cycle
Maximum angle during gait cycle

Minimum NAYV during stance
Median NAV during stance
Maximum NAYV during stance

Minimum NAV during swing
Median NAV during swing
Maximum NAV during swing

Minimum NAYV during gait cycle
Median NAV during gait cycle
Maximum NAV during gait cycle

Fig. 1. Example of the numerical
characterization (19) of the knee
flexion/extension normalized
with respect to a patient’s
ipsilateral stride
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Table I. Feature-extraction overview and manual feature selection (step 1) for each SMS subscore

Extracted features

Feature selection (step 1)

680 features per stride pair:
e 30 gait parameters (15 parameters x 2 sides)

e 648 numerical characterizations of movement (18 angles x 18 numerical

characterizations x 2 sides) Trunk- Leg- Arm- Speed- Fluency- Stability-
o 2 walking-aid features SMS SMS SMS SMS SMS SMS

Gait Standard Gait speed [m/s] X X X X X X
parameters Cadence [steps/s] X X X X X X
Stride and step time [s] X X X X X

Single and double support duration time [s] X X X X X

Single and double support duration [%] X X X X X

(Height) Normalized step width [-] X X X X X

(Leg length) Normalized step and stride lengths [-] X X X X X

Limp index [-1 X X X X X

Phase Start of swing phase [%] X X X X X

Duration of stance and swing phases [%] X X X X X

Numerical characterization Pelvis Orientation  Tilt, Obliquity, Rotation X X X X
of movement Thorax Orientation Tilt, Side Tilt, Rotation X X X X
Foot Orientation Progression X X X X

Hip Joint Flexion/Extension, Adduction/Abduction X X X X

Knee Joint Flexion/Extension X X X X

Ankle Joint Dorsiflexion/Plantarflexion, Inversion/Eversion X X X X

Spine Tilt, Side Tilt, Rotation X X X X

Shoulder Joint Flexion/Extension, Adduction/Abduction X X X X

Elbow Joint Flexion/Extension X X X X

Aid Walking Cane [-1 {0: no usage, 1: usage} X X X X X X
AFO [-1 {0: no usage, 1: usage} X X X X X X

SMS: Stroke Mobility Score; AFO: Ankle-foot orthosis.

feature and observing the resulting degradation of the model’s
performance (26).

RESULTS

A total of 100 patients were included in this study, from
which a total of 904 stride pairs were extracted. The
training and test dataset consist of 633 stride pairs of 65
patients and 271 stride pairs of 35 patients, respectively.
All the steps were carried out on a 5.3 GHz Intel® Core™
19-10900K with Python 3 and other libraries for appli-
cations in science and data analysis (e.g. SciPy, NumPy,
pandas) (26, 28, 30-32).

Based on objective data from gait analysis and input
from an interdisciplinary expert board, we trained ML
models that predict SMS subscores with a large correla-
tion (33) to the expert board assessments (R*>0.25). The
optimal model hyperparameters and the performance esti-
mates are shown in Table III.

The overall performance of the models is compa-
rable to the agreement of each expert recommenda-
tion with the collective decisions of the expert board
(Figs 2 and 3).

The DT models allow for a straightforward interpreta-
tion of the model decision-making process. Figure 4 pre-
sents the DT model for the Stability-SMS as an example.
The DT models predicting all the SMS subscores are
shown in Appendix A. The key features of the DT and the
MLP models for the Stability-SMS are shown in Table I'V.
The key features of all SMS subscores can be found in
Appendix A.

The expert board assessments and the predictions of
the trained models show a high degree of conformity.
The key features delivered by the models hint at where
to look in detail when assessing the mobility of a post-
stroke patient. For example, when assessing the risk of
falling, the stance duration as well as the maximal rate
of change (NAV) of the ipsilateral knee flexion and the

Table II. Grid-search hyperparameter tuning of the decision-tree and multilayer perceptron regression models via a 10-fold cross
validation procedure for each combination of hyperparameters. ReLU was used as activation function for every hidden unit of the

multilayer perceptron model

RM Model hyperparameter Abbreviation Values examined
DT Number of features to consider during splitting at each DT-HP1 {n, Jn, log n}
tree node
Strategy used to choose the split at each tree node DT-HP2 Select split that best minimizes mean squared error from {all
possible splits, randomly initialized splits}
Minimum weight fraction at each tree node DT-HP3 {0.00, 0.01, 0.02, ..., 0.05}
Maximum depth of the trees DT-HP4 {3, 4, 5} as recommended by (13)
MLP Number of hidden layers MLP-HP1 {2, 3} with hidden units {16, 8} and {32, 16, 8}, respectively
Activation function of the last output unit MLP-HP2 {linear, ReLU}
Learning rate of the Adam optimizer (29) MLP-HP3 {1x103 1x 10,1 x 105}

If 1 x 1075, try the following values for MLP-HP1 and MLP-HP2 fixed:
{7.5 x 1075, 5.0 x 10, 2.5 x 1075, 1.0 x 10-°, 7.5 x 107¢, 5.0 x
1076, 2.5 x 10-%}

DT: Decision tree; MLP: Multilayer perceptron artificial neural network; RM: Regression model; n: Total number of features; ReLU: Rectified linear unit.
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Table III. Optimal model hyperparameters of each SMS-subscore decision-tree and multilayer perceptron regression models, their
performance on the test dataset in terms of the coefficient of determination R?, and the corresponding interrater reliabilities ICC, , of
the expert board assessments

Optimal Model Hyperparameters R? ICC, ,
SMS subscore Feature subset DT MLP DT MLP Board
Trunk posture 241 of 680 features DT-HP1: n MLP-HP1: 3 0.37 0.58 0.65
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.03 MLP-HP3: 2.5e-05
DT-HP4: 5
Leg movement 188 of 356 pre-selected features  DT-HP1: n MLP-HP1: 3 0.51 0.59 0.73
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.02 MLP-HP3: 1e-05
DT-HP4: 5
Arm movement 99 of 330 pre-selected features DT-HP1: n MLP-HP1: 3 0.40 0.61 0.72
DT-HP2: Random MLP-HP2: RelLU
DT-HP3: 0.03 MLP-HP3: 1e-03
DT-HP4: 5
Gait speed 31 of 32 pre-selected features DT-HP1: n MLP-HP1: 2 0.77 0.77 0.72
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.03 MLP-HP3: 1e-04
DT-HP4: 5
Gait fluency 263 of 680 features DT-HP1: n MLP-HP1: 2 0.54 0.76 0.72
DT-HP2: Random MLP-HP2: linear
DT-HP3: 0.01 MLP-HP3: 1e-03
DT-HP4: 5
Stability of walking 238 of 680 features DT-HP1: n MLP-HP1: 2 0.86 0.85 0.83
on flat ground/risk DT-HP2: Random MLP-HP2: linear
of falling DT-HP3: 0.02 MLP-HP3: 1e-03
DT-HP4: 5

Collection of SMS subscore models combined to predict the SMS

0.82 0.87 0.88

SMS: Stroke Mobility Score; DT: Decision tree; MLP: Multilayer perceptron artificial neural network; R?: Coefficient of determination; DT-HP1, DT-HP2, DT-HP3,
DT-HP4, MLP-HP1, MLP-HP2, MLP-HP3: See Table II.

contralateral hip flexion angles during stance are most
relevant (Table IV).

DISCUSSION

The SMS and the Stability-SMS models perform very well
(R?>0.8), while the other models perform well (R*>0.5)
(Table III). The performances correlate strongly [Cohen
(33), p=0.02, r = 0.83] with the corresponding inter-rater

reliabilities ICC, . A high ICC,
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Fig. 3. Scatterplots showing how the trained decision-tree models (left) and multilayer perceptron models (right) compare with the expert board

mobility assessment (abscissa) for the Stroke Mobility Score

The DT models produced two underpredicted out-
liers (see Fig. 3 at an expert board mobility assess-
ment of 9). As explained in detail in Appendix B, both
patients exhibit outlying walking speeds, which led to a
false estimation of the Leg-SMS and Arm-SMS scores.

The overall key features consist of 46% ipsilateral and
54% contralateral features for the DT models, and 53%
ipsilateral and 47% contralateral features for the MLP
models. This shows the importance of regarding the cont-
ralateral side, which is often neglected during patient
assessment and stroke rehabilitation (34, 35), thus confir-
ming studies that show bilateral impairment of the upper
and lower extremities poststroke (36). Furthermore, the
NAVs make up a large percentage of the top features,
namely 20 and 73% for the DT and MLP model, respec-
tively. This suggests that not only descriptive values but

Feature Types

IGait Parameters ‘ ‘ Angle/Translations

(v )

SMS sub-score: Stability of walking on
flat ground/risk of falling

also the shape of the joint angle progressions are important
for mobility assessment.

In this work, key features were unveiled globally, that
is, for the whole training dataset. It is also possible to use
local explainers to obtain key features with respect to a
particular stride pair (13, 37, 38). An example on how
Shapley Additive Explanations (SHAP) may be used can
be found in Appendix C. Together, global and local key
features mirroring expert assessment can improve the
understanding of mobility disorder.

In conclusion, the SMS prescribed by an interdiscipli-
nary expert board can be reproduced very well from gait
data using interpretable DT and explainable MLP models.

The SMS has proven to be an excellent score for
Al-driven poststroke mobility assessment based on gait
data. Its subscore structure allows for a nuanced clinical

Stance Duration
contra.
<=69.3 %G.C

[

I Stride Length (norm.) | T Step Time
ipsi. ipsi.
<=1.184 4, <=0.708 s

g

'

/

Elbow Flex./Ex. Foot Progression v Spine Rotation
Angle contra. Angle contra. SMS-Stability Angle ipsi.
Stance median Swing median 0.68 Swing max.
<=34.95° <=-3.667 ° <=0. 802
Thorax Rotation Spine Side Tilt Ankle Dorsiflexion Hip Flex./Ex. Thorax Tilt
Angle contra. Angle ipsi. NAV ipsi. SMS-Stability Angle ipsi. NAV contra.
Swing median Swing max. Stance min. 0.86 Stride min. Stance max.
<=-0.745° <=4.698 ° <=-1.78 °/(%G.C) <=5615° <=0.236 °/(%G C)

' S\

SMS-Stability SMS-Stability SMS-Stability SMS-Stability SMS-Stability SMS-Stability SMS-Stability SMS-Stability SMS- Stablllty SMS Stablllty
0.95 0.53 0.0 0.77 0.02 0.37 1.81 2.0

Fig. 4. Decision tree model predicting for the Stroke Mobility Score —Stability
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Table IV. Top key features used by the MLP and decision-tree regression models for the SMS-Stability, sorted from most to least important.
The features used by the multilayer perceptron models were ranked according to permutation importance with 500 repetitions of random
shuffling. The features used by the decision-tree models were sorted from most to least important in terms of their total contribution in
reducing the squared error over all tree splits

SMS subscore To

p 20 features used by the MLP model

All features used by the DT model (MLP rank in parenthesis)

Stability of walking
on flat ground/risk of
falling

. Walking Cane?
. Knee Flex./Ex. NAV ipsi.(Stance max.)
. Hip Flex./Ex. NAV contra.(Stance max.)

. Knee Flex./Ex. NAV contra.(Swing median)

. Ankle Dorsiflexion NAV ipsi.(Stride min.)
. Elbow Flex./Ex. NAV contra.(Swing median)

. (1) Walking Cane?

. (221) Stance Duration contra.

. (91) Step Time ipsi.

. (201) Spine Rotation Angle ipsi.(Swing max.)
. (125) Stride Length (norm.) ipsi.

. (79) Spine Side Tilt Angle ipsi.(Swing max.)

. (121) Thorax Tilt NAV contra.(Stance max.)

1
2
3
4
5. Ankle Dorsiflexion NAV ipsi.(Stance min.)
6
7
8

. Knee Flex./Ex. NAV ipsi.(Stride max.)
9. Elbow Flex./Ex. NAV contra.(Swing min.)
10. Knee Flex./Ex. NAV ipsi.(Swing max.)
11. Hip Flex./Ex. NAV contra.(Stride max.)
12. Shoulder Flex./Ex. NAV ipsi.(Swing max.)
13. Hip Flex./Ex. NAV contra.(Swing max.)
14. Foot Progression NAV ipsi.(Swing median)
15. Hip Flex./Ex. NAV ipsi.(Swing max.)
16. Knee Flex./Ex. NAV ipsi.(Stride min.)
17. Shoulder Flex./Ex. NAV contra.(Stance median)
18. Knee Flex./Ex. NAV ipsi.(Stride median)
19. Elbow Flex./Ex. NAV contra.(Stride max.)
20. Pelvis Rotation NAV contra.(Stance median)

NV WN

. (26) Foot Progression Angle contra. (Swing median)
9.

(228) Elbow Flex./Ex. Angle contra. (Stance median)
10. (136) Thorax Rotation Angle contra. (Swing median)
11. (5) Ankle Dorsiflexion NAV ipsi.(Stance min.)

12. (58) Hip Flex./Ex. Angle ipsi.(Stride min.)

SMS: Stroke Mobility Score; DT: Decision tree; MLP: Multilayer perceptron artificial neural network; NAV: Normalized angular velocity.

assessment of the different functional aspects of gait,
which supports a detailed interpretation/explanation of
the AI models.

Overall, this work shows that it is possible to build an
intelligible Al-driven decision support system for post-
stroke mobility assessment. We believe that intelligibility is
the key to a successful deployment of such a system, since
the identification of the key features used by the Al models
to make their predictions may lead to a more objective and
effective identification of therapeutic targets.
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