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LAY ABSTRACT
Following a stroke, adjusting a training program on 
the integrity of the brain’s motor pathway allowing 
arm movement translates into short-term gains in 
arm function. The aim of this study was to assess 
whether the gains observed were maintained for up to 
1 year following training. Thus, 25 participants were 
assigned to a low or a high-intensity training group, 
depending on the integrity of their brain’s motor pat-
hway. Each participant trained his affected arm 3/X a 
week for 4 weeks. Function of the affected arm was 
assessed before and after training as well as 1 year 
following the end of the training. Results showed that 
training allowed significant gains in arm function, but 
the participants in the low-intensity training group 
improved better. Adjusting a training protocol to each 
individual’s integrity of his brain’s motor pathway 
allows for gain in arm function that is maintained up 
to 1 year post-training.

Objective: We showed that a tailored strengthening 
intervention based on the size of motor evoked 
potentials (MEPs) in the affected arm was effec-
tive in improving function in chronic stroke survi-
vors. Here, we investigated whether the short-term 
gains in arm function were maintained at 1-year 
follow-up.
Subjects: Twenty-five participants at the chronic 
stage of a stroke.
Methods: Participants were classified in the 
light (LI; MEPs 50–120 μV, n = 8) and high (HI; 
MEPs > 120μV, n = 17) intensity training groups. 
The strengthening protocol consisted of adjusted 
exercises for the affected arm (3X/week; 4 
weeks). The Fugl-Meyer Stroke Assessment (FMA), 
Grip strength (GS) and Box and Block test (BBT) 
were assessed at baseline, post-intervention and 
at 1-year follow-up. Changes in clinical measures 
were compared using repeated-measures ANOVA.
Results: A significant effect of time was noted on all 
outcome measures [FMA: p < 0.001; BBT: p = 0.05; 
GS: p < 0.001], but the LI group improved more on 
the FMA (p = 0.003) and maintained their gains at 
1-year follow-up (p = 0.527) than the HI group. 
Conclusion: The size of MEPs in the affected 
arm could be a significant factor in influencing 
responses to strengthening exercises post-stroke 
and allow gains to be maintained up to 1 year 
post-intervention.
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motor evoked potential; follow-up evaluation.
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Stroke is the third-leading cause of disability worldwide 
(1). Paresis of the upper extremity (UE) contralesional 

to the affected brain areas is among the most common 
consequences of stroke, and persists at the chronic stage 
of a stroke (> 6 months post-stroke) (2). UE paresis can 
impede the ability of individuals to accomplish basic 
activities of daily living (e.g. eating, grooming), as well 
as instrumental activities of daily living (e.g. shopping, 
housekeeping) (3–5). For example, at 1 year post-stroke, 
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because of UE paresis, 33% of individuals require assis-
tance for dressing the upper body, and more than 75% 
require full assistance for meal preparation (3). This 
decrease in UE performance also translates into a decrease 
in social participation and a poorer level of satisfaction 
from life (3, 4). 

Strengthening interventions have been shown to be 
effective in promoting neuroplasticity (6), motor capa-
bilities (7–12), and strength (6, 7, 10, 13) in acute and 
subacute stroke survivors. For example, Fang and col-
leagues reported significant improvement in UE motor 
impairment in participants in the acute phase of stroke 
who received 45 min of daily supervised physiotherapy 
for 4 weeks compared to those without physical therapy 
(14). These findings in the acute phase are consistent with 
the notion that the first 3 months are a critical window for 
neuroplasticity and neural reorganization (15), which also 
corresponds to the time when most of the recovery is seen 
post-stroke (16).

There is growing evidence that intense rehabilitation 
interventions can also reduce motor impairments in chro-
nic stroke survivors (6, 8). For instance, Beaulieu and 
colleagues investigated the effect of a resistance training 
intervention, paired or not with transcranial direct current 
stimulation (tDCS), in a group of 14 chronic stroke sur-
vivors (8). The intervention consisted of 60 min of exer-
cises, 3 times per week for 4 weeks, targeting the affec-
ted UE. Although using tDCS did not lead to additional 
functional UE gains, both groups showed improvement in 
response to progressive resistance exercise. Recently, our 
group investigated the effect of a strengthening interven-
tion targeting the UE in a large sample of chronic stroke 
survivors (n = 90) (17, 18). Participants were stratified 
into 3 intensity groups based on the size of motor evoked 
potentials (MEPs) elicited by transcranial magnetic sti-
mulation (TMS) in the affected hand, which provided an 
index of corticospinal integrity and potential responsivity 
to training. Our results showed that adjusting the training 
intensity based on MEP size led to clinically significant 
gains in the affected UE for all participants, regardless of 
baseline stroke severity (17, 18).

There are still controversies as to whether the improve-
ments gained from exercise interventions have long-term 
benefits in post-stroke survivors (19–27). Wu and collea-
gues compared the long-term recovery trajectories for 2 
types of intervention: robot-assisted therapy and intensive 
training aiming to match robot-assisted therapy, which 
were compared with usual care (26). Both intervention 
groups underwent 1-h functional UE supervised training 
3 times per week for 12 weeks until about 36 sessions 
were completed. Post-training, those in the intervention 
groups demonstrated greater improvement in UE function 
relative to the usual care group; however, at follow-up 36 
weeks, no difference was detected. On the other hand, 
Stinear and colleagues investigated the effects of a 30-day 
training program on participants in the chronic stage and 
showed that gains in UE function were maintained up to 3 

years post-intervention. Interestingly, the participants who 
maintained their gains also exhibited MEPs in response to 
TMS (27), indicating some preservation of corticospinal 
integrity. As stated earlier, our own investigation provided 
further evidence that the presence of MEPs is indeed a 
critical factor influencing the response to exercises in the 
affected UE (17, 18).

Here, our goal was to describe our observations col-
lected from a subset of participants who completed our 
MEP-based strengthening intervention and were reasses-
sed at 1-year follow-up. Based on studies that have found 
sustained long-term gains in function with exercise in 
chronic stroke survivors (21, 22, 24, 25, 27), we expec-
ted that the short-term gains in UE function post-training 
would still be detectable in the long term.

METHODS
A detailed description of the study’s protocol and entry crite-
ria is given elsewhere (17). In brief, participants at the chronic 
stage of a stroke were allocated to 3 training intensity groups 
based on the size of MEPs (peak-to-peak amplitude) elicited by 
supramaximal TMS pulses (1.3 X motor threshold) applied over 
the hand motor area of the lesioned hemisphere using the first 
dorsal interosseous (FDI) as the target muscle. Participants with 
MEPs < 50 μV were allocated to a low-intensity (LI) group, those 
with MEPs between 50 and 120 μV to a moderate-intensity (MI) 
group and those with MEPs > 120 μV to a high-intensity (HI) 
group. In each training group, the strength training program con-
sisted of lifting dead weights, specifically targeting the shoulder, 
elbow flexors, and wrist extensors of the affected arm. At the 
beginning of each week of training, participants’ 10 RM (the 
maximal load that could be lifted 10 times consecutively) was 
assessed to estimate their 1 RM (28). The estimated 1 RM was 
then used to calculate the baseline at which participants began 
the upcoming week of training: those in the LI group began at 
35% of their 1 RM, while MI and HI participants began at 50% 
and 70%, respectively. The intensity of training was increased 
by 5% weekly for the duration of the intervention so that at the 
end of the 4 weeks, participants in the LI group trained at 50% 
1 RM, while the MI and HI groups, respectively, trained at 65% 
and 85% 1RM. The training also targeted grip strength (GS) 
using the Jamar® hydraulic hand dynamometer. The strengthe-
ning protocol also included anodal tDCS of the affected motor 
area (2 mA, 20 min) while participants performed their exerci-
ses. However, since no difference was detected in the clinical 
outcomes between sham and real tDCS in our group of partici-
pants (see Palmeris et al. 18), this aspect is not discussed here.

All participants underwent clinical assessment of their UE by 
an experienced physiotherapist who was blinded regarding group 
allocation. The assessment took place in each site laboratory set-
ting and lasted about 90 min. The assessment was performed at 3 
time points: at baseline, prior to training (T1), immediately after 
the intervention (T2), and at 1-year follow-up (T3). The assess-
ment included the following primary outcome measures: (i) the 
UE-FMA (29), (ii) the Box and Block test (BBT) (30), and (iii) 
GS, measured in kg (average of 3 trials). Several secondary out-
come measures were also considered, including a self-reported 
quantity and quality of use of the paretic UE, quantified by the 
Motor Activity Log (MAL) (31), and the active range of motion 
(AROM) in flexion at the affected shoulder, elbow, and wrist 
(Fig. 1). All these tests are valid and present good psychometric 
properties for individuals with a stroke (32–35).
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Prior to taking part in this study, all participants signed a con-

sent form approved by the Research Ethics Committee (REC) of 
the CIUSSS de l’Estrie-CHUS (MP-22-2016-630) and Bruyère 
Research Ethics Committee (protocol #M16-16-028). The study 
is registered to ClinicalTrials.gov (NCT02915185).

Statistical analysis

Due to the small number of participants in the LI and MI groups, 
data from these 2 groups were combined to create a larger LI tre-
atment group. Henceforth, the LI group refers to 8 participants 
who underwent either LI- or MI-intensity training. 

Sociodemographic characteristics between the LI and HI 
groups were compared using the Mann–Whitney U test for 
continuous variables and χ2 tests of independence for propor-
tions. Descriptive statistics were used to characterize the sam-
ple at baseline, and the Mann–Whitney U test was used again 
to evaluate between-group differences in outcome measures at 
baseline. To compare observations between all measurement 
periods, repeated-measures ANOVAs were conducted for each 
outcome variable with time (T1 vs. T2 vs. T3) as the repeated 
factor and training group (LI/MI, HI) as the between-subject 
factors. Where significant differences were detected between 
measurement times, post-hoc analysis with Holm-Bonferroni 
correction was performed to identify between which measure-
ment periods there was a change in the outcome variable. All 
statistics were computed using R Statistical Software (version 
4.0.1) (36).

RESULTS
Baseline sociodemographic characteristics and clinical 
outcomes between groups
Twenty-six participants were reassessed at the 1-year fol-
low-up. Of these, 1 had to be excluded for experiencing a 
second stroke in the months after completing the interven-
tion. As seen in Table I, participants in the LI and HI train-
ing groups shared common characteristics with regard to 
demographics and history of stroke (i.e. time since stroke, 
side of stroke, type of stroke). However, participants in 
the HI training group exhibited significantly higher scores 
on most clinical measures than those in the LI training 
group.

Differences between assessments over time
A significant effect of time was noted for all outcome 
measures, except BBT and AROM at the elbow and wrist 
(see Table II). Also, the 2 training groups improved simi-
larly for most outcome measures, as seen in the lack of 
significant interaction effects between Training group X 
Time. However, for the FMA and AROM at the shoul-
der, post-hoc analysis of the Training group X Time 
interaction showed that only participants in the LI/MI 

Fig. 1. Study flow diagram.
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training group improved from T1 to T2 (FMA: p = 0.003; 
Shoulder: p = 0.023) and maintained their gains at the FUP 
evaluation (FMA: p = 0.527; Shoulder: p = 1), whereas the 
HI training group did not show any changes between T1 
and T2 (FMA: p = 0.527; Shoulder: p = 1) and T2 and FUP 
(FMA: p = 0.752; Shoulder: p = 1).

DISCUSSION
To the best of our knowledge, the present study is the first 
to evaluate the long-term effects of a tailored, MEP-based 
UE strength training intervention in chronic stroke survi-
vors. On average, participants maintained post-interven-
tion improvements in UE function until at least 1-year 
follow-up. For most outcome measures, participants’ 
gains were not modulated by their level of impairment, as 
measured by their MEP amplitude.

The long-term efficacy of rehabilitation therapies in 
individuals with chronic stroke

Our results are in line with the studies that have found 
long-term benefits of rehabilitation interventions in chro-
nic stroke survivors. Ramos-Murguialday and colleagues 
showed that, following a 4-week intervention of both 

Brain-Machine-Interface (BMI) training and physioth-
erapy, a cohort of individuals with chronic stroke outper-
formed a control group at a 1-year follow-up as asses-
sed by the FMA (24). The intervention took place every 
weekday and consisted of 1 h of BMI training, where the 
participant’s paretic UE was moved by a robotic ortho-
sis, either in response to sensorimotor rhythms (interven-
tion group) or at random (control), followed by an hour 
of physiotherapy. Sale and colleagues showed that serial 
robotic training resulted in a long-term improvement in 
UE function as measured at 1-year follow-up in individu-
als with chronic stroke, traumatic brain injury, and spinal 
cord injury (25). Specifically, participants who under-
went a 2nd round of robot-assisted therapy, beginning 3 
months after the termination of initial treatment, demon-
strated improved scores on the BBT and Frenchay Arm 
Test compared to the control group. Given that robotic 
training allows for intense training, and that our interven-
tion individualized training according to the person’s own 
recovery potential to guarantee optimal training intensity, 
it may be thought that to achieve or maintain post-training 
gains, intensity plays an important role for chronic stroke 
individuals. 

Although our study did not specifically evaluate partici-
pants’ performance using their UE during daily activities, 
the sustained gains in UE function observed at the 1-year 
follow-up evaluation are quite promising for everyday UE 
use. From studies having found that enhanced UE fun-
ction can lead to improved independence in performing 
daily tasks such as dressing or toileting (5) as well as allo-
wing for an increased participation in social activities (4), 
it can be thought that our tailored MEP-based arm training 
could allow for a greater arm use and better performance 
in basic and instrumental everyday activities. The ability 
to use the affected UE more effectively could also boost 
stroke survivors’ confidence in using it, encouraging a 
more frequent use and further UE functional gains, as 
seen even at the chronic stage of a stroke (2).

The effect of stroke severity on recovery potential
In our study, except for FMA score and shoulder AROM, 
participants’ maintenance of gains in UE function was 
not affected by the severity of their stroke, as measu-
red by MEP amplitude. This result contradicts existing 
literature concerning the question of whether stroke 

Table I. Sociodemographic characteristics and clinical outcomes 
for both training groups [Mean (SD)]

Sociodemographic 
Characteristics LI (n = 8) HI (n = 17) p*

Age (years) 66 (9) 66 (9) 1.00
Handedness (right/left) 7/1 13/4 0.91
Sex (male/female) 5/3 13/4 0.80
Time since stroke (years) 4 (5) 5 (4) 0.32
Side of stroke (right/left) 4/4 8/9 1.00
Type of stroke (ischemic/
hemorrhagic/other)

7/1/0 12/4/1 0.60

Clinical outcomes
FMA (normal = 66) 42 (16) 61 (13) 0.003
BBT (# of blocks in 60 s) 19 (17) 49 (16) 0.003
GS (in kg) 17 (14) 35 (12) 0.006
MAL AOU (normal = 5) 2.04 (1.78) 4.14 (1.45) 0.016
MAL QOU (normal = 5) 1.88 (1.63) 3.83 (1.44) 0.031
Shoulder AROM flexion (°) 117 (47) 147 (37) 0.085
Elbow AROM flexion (°) 138 (7) 138 (9) 0.884
Wrist AROM flexion (°) 39 (23) 67 (21) 0.004
*Mann-Whitney U Test for continuous variables, Chi-square test for 
independence for proportions; FMA: Fugl-Meyer Assessment; BBT: Box and 
Block Test; GS: Grip Strength; MAL AOU: Quantitative Motor Activity Log; 
MAL QOU: Qualitative Motor Activity Log; AROM: Active Range of Motion; LI: 
low-intensity; HI: high-intensity.

Table II. Changes in outcome measures over time in both training groups

Time
(F2, 22) p

Training group
(F1, 23) p

Interaction effect
(F2, 22) p

FMA 22.120 < 0.001* 8.147 0.009* 10.778 < 0.001*

BBT 3.068 0.056 14.020 < 0.001* 1.815 0.174
GS 8.999 < 0.001* 11.714 0.002* 1.283 0.287
MAL AOU 4.941ɛ 0.024ɛ* 10.602 0.003* 0.369ɛ 0.615ɛ

MAL QOU 20.745ɛ < 0.001ɛ* 9.653 < 0.005* 0.516ɛ 0.538ɛ

Shoulder AROM 8.278 < 0.001* 2.136 0.157 3.777 0.030*

Elbow AROM 0.615 0.545 0.480 0.495 0.562 0.574
Wrist AROM 1.279 0.288 7.882 0.010* 1.377 0.263
FMA: Fugl-Meyer Stroke Assessment; GS: Grip strength; BBT: Box and Block test; MAL: Motor Activity Log; AROM: active range of motion.
(*) indicates significance of corresponding F test, (ɛ) indicates Greenhouse-Geisser correction.
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severity modulates recovery potential (13, 27, 37–39). 
For example, Stinear and colleagues used MEP ampli-
tude and FA of the corticospinal tract (CST) to predict 
the state of post-stroke participants’ UE function and their 
functional recovery potential (27). They found that the 
presence of MEPs modulated the potential for recovery, 
as those with MEPs could see functional recovery as late 
as 3 years post-stroke, while recovery in those without 
MEPs was heavily dependent on damage to the CST. 
Likewise, Prabhakaran and colleagues modeled the reco-
very of 41 individuals with acute ischemic stroke of vary-
ing severity, as measured by UE FMA score at baseline 
(38). Clinical variables, including age, sex, lesion loca-
tion, infarct volume, time between evaluations, and stroke 
severity, were found to be strong predictors of recovery 
for only individuals with mild-to-moderate impairment 
post-stroke; those with severe impairment demonstrated 
little recovery. Most recently, Bonkhoff and colleagues 
reaffirmed the distinction between the recovery patterns 
of individuals with moderate stroke and those with severe 
stroke (40). Considering those with UE FMA scores less 
than 45, the authors constructed a Bayesian hierarchical 
model to predict participants’ change in FMA scores over 
the period of 6 months. While both the moderate and 
severe groups were found to experience a similar average 
change in FMA score over time, it was concluded that 
individuals with severe stroke-related impairments reco-
vered more the smaller their impairment level was, while 
for better-recovered stroke survivors, they recovered 
more the larger their initial impairment (40). 

There are several reasons for the discrepancy between 
the results of our study and those of previous ones. By 
having tailored our UE strength training intensity to par-
ticipants’ recovery potential, our intervention may have 
been uniquely useful in allowing gains in UE function 
for more severe chronic strokes. In comparison, existing 
research reflects other, more generic interventions and are 
thus less effective for recovery from a severe stroke than 
the intervention used in the present study (13, 27, 38, 40). 
Also, our study concerns exclusively those in the chronic 
phase of stroke, and it is possible that the differences in 
recovery potential between those of mild to severe stro-
kes are attenuated as one moves into the chronic phase of 
recovery (13, 38, 39). Another reason might be the exclu-
sion criteria of the present study. Individuals presenting 
significant spasticity or pain intensity at the affected UL, 
along with a major sensory deficit or hemineglect, were 
excluded from the study. It is possible that individuals 
disproportionately contribute to the variation in recovery 
patterns between severe and less severe stroke survivors, 
and thus the present study lacks variation between the 
groups. Finally, in a previous study by Milot and collea-
gues, where the authors compared the predictive power 
of fMRI, diffusion-tensor imaging, and MEPs elicited 
from TMS in predicting UE motor recovery following an 
8-week robotic training intervention (37), it was found 
that MEP magnitude at baseline was the most significant 

predictor of change in BBT scores between pre- and post-
intervention. It was also noted that participants with lower 
MEP amplitude at baseline experienced greater improve-
ments in BBT scores. The authors attributed this effect to 
participants having more room to improve with training. 
It is possible that a similar effect is being observed in the 
present study for our more severely impacted participants. 
Further looking at the data, it was noted that in the entire 
cohort, 3 out of 4 participants that showed a decline in UE 
function following training were in the HI training group, 
thus having better recovered from their stroke. That FMA 
score maintenance over time was modulated by the MEP 
group; it may be due to the HI group’s higher mean FMA 
score at baseline (Table I). Indeed, while the maximum 
score for FMA is 66, the HI group’s mean score was 61, 
while that of the LI group was only 42. This higher base-
line FMA score may introduce a ceiling effect, wherein 
after post-treatment assessment, participants of the LI 
group have room to improve their FMA score, while those 
in the HI group do not. Because of this, we expect the 
interaction effect between time and impairment level in 
predicting functional performance to be a feature specific 
to the FMA, and not functional recovery processes.

Additionally, we found that improvement in AROM 
in the paretic shoulder, on average, was maintained over 
time, as opposed to the elbow and wrist range of motion, 
which saw no improvement. Because of the shoulder’s 
critical importance in the functional use of the UE (41), 
this finding further suggests that considering MEP amp-
litude in the prescription of post-stroke strength training 
exercises is crucial to optimize short- and long-term train-
ing response and recovery in the chronic phase of a stroke. 
The fact that the shoulder plays a critical role in motor 
recovery may also underlie the significant interaction 
effect between Training Group and Time when it comes 
to predicting shoulder range of motion. Specifically, we 
found that those in the LI group improved their shoulder 
range of motion to a greater extent, between T1 and T2, 
compared to those in the HI group. We suspect that the 
LI group experienced greater recovery because they had 
more room to improve (37).

Overall, our results reaffirm that modulating strength 
training programs by a biomarker of CST integrity leads 
to short- and long-term UE functional improvements, 
irrespective of the individual’s initial severity of stroke.

Study limitations

As for the study limitations, we mentioned previously that 
FMA scores were high for many participants in the HI 
training group, which may have introduced a ceiling effect 
and concealed the subtle improvements in motor impair-
ment otherwise made by these participants. Additionally, 
because the follow-up study was conducted throughout 2 
different sites, potential inconsistencies in data collection 
may have occurred. However, the research team involved 
in data collection underwent training before any data was 
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collected to limit this potential problem. The exclusion 
criteria of the study, which precluded the participation of 
post-stroke individuals who were unable to perform the 
training program, limits the generalizability of the results 
in the population of chronic stroke survivors. Finally, the 
uneven distribution of participants across treatment inten-
sity groups, in addition to the relatively small sample size 
of the study, may also be considered a confounding factor.

In conclusion, individuals with chronic stroke whose 
UE strength training intervention was tailored by a bio-
marker of corticospinal integrity by means of MEP amp-
litude saw improvements in functional ability of the UE 
that were sustained for at least 1 year following the inter-
vention. Moreover, the present study supports the gro-
wing body of evidence that long-term functional recovery 
is a feasible goal for individuals with chronic stroke and 
suggests that rehabilitation is a worthwhile endeavor for 
those with more severe stroke impairments. 
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