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Mast cells are known to be the effector cells of imme-
diate-type allergy, but experimental evidence obtained 
during the last decade has revealed their role in innate 
and acquired immunity. Upon activation mast cells can 
undergo an anaphylactic or piecemeal degranulation or 
degranulation-independent mediator secretion, resul-
ting in rapid or slow release of soluble mediators, such 
as serine proteinases, histamine, lipid-derived media-
tors, cytokines, chemokines and growth factors. Mast 
cells can express different receptors and ligands on the 
cell surface, molecules that can activate the cells of the 
immune system, such as different subsets of T cells. All 
these mediators and cell surface molecules can promote 
inflammation in the skin. During the last years, a new 
role for mast cells has emerged; induction of tolerance 
or immunosuppression and interaction with regulatory 
T cells. However, the mechanisms that switch the pro-
inflammatory function of mast cells to an immunosup-
pressive one are unknown. In this review, the immuno-
regulatory function of mast cells and its relation to skin 
inflammation are discussed. Key words: mast cell; media­
tor; skin; inflammation; immunosuppression.
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Mast cells have traditionally been known as “allergy” 
cells that cause the symptoms of immediate-type allergy 
and are typically located at sites where the host tissue 
can encounter external antigens, allergens, toxins and 
microbes, e.g. the upper dermal skin, respiratory tract and 
bowel mucosa (1). Even though the physiological role 
of mast cells is not clear, evidence obtained from mouse 
models suggests that mast cells are essentially involved 
in protecting the skin from severe bacterial and parasitic 
infections (2–4) and from severe venom reactions after 
insect stings and snake bites (5). In addition, mast cells 
regulate cutaneous wound healing after trauma (6, 7).

Mast cells in the human tissues can be classified 
into MCTC, MCT and MCC subtypes based on their pro-
teinase content: MCTC cells contain tryptase, chymase, 
carboxypeptidase and a cathepsin G-like proteinase, 
MCT cells contain only tryptase (8–10), and MCC cells 

show chymase and carboxypeptidase, but not tryptase 
(10). They all contain histamine. Almost all mast cells in 
the human skin belong to the MCTC type, whereas MCT 
cells predominate in the lung and bowel mucosa (8, 10). 
This suggests that the “C” type enzymes, chymase, car-
boxypeptidase and a cathepsin G-like proteinase, have a 
specific function in the skin after release from mast cells 
through degrading different proteins and peptides.

In a traditional model, mast cells are activated to 
degranulation and mediator release by an allergen that 
cross-links IgE molecules and their FcεRI receptors on 
the cell membrane. However, this is a highly simplified 
picture of the mast cell. Skin mast cells can express the 
FcγRI- and FcγRIIa-receptors and thereby be activated 
by IgG-dependent mechanisms (11, 12). In addition to 
the binding to cell surface immunoglobulin, foreign 
antigens, such as microbial products, can bind to a va-
riety of toll-like receptors expressed on mast cells (13). 
Endogeneous peptides and proteins can activate mast 
cells for mediator release, such as complement products 
C3a and C5a (14), neuropeptides including substance P 
and vasoactive intestinal peptide (VIP) (15), stem cell 
factor (SCF) (16), tumour necrosis factor (TNF) (17), 
tryptase (18), cathelicidin LL-37 (19), α-melanocyte-
stimulating hormone (20) and corticotrophin-releasing 
hormone (21). Furthermore, human mast cells can ex-
press CD30 ligand, a member of the TNF superfamily, 
and the cells can be activated via the CD30 receptor 
to chemokine secretion by means of reverse signalling 
(22). It is noteworthy that mast cells can not only be 
activated to mediator release by a simple on–off mecha-
nism, i.e. resting cell or rapid and extensive anaphylactic 
degranulation. It has long been known that mast cells 
can undergo slow and partial piecemeal degranulation 
(23). In addition, other secretion mechanisms have been 
described, such as exosome secretion (24), and selec-
tive degranulation-independent mediator secretion (21, 
22). For example, the increased interstitial histamine 
concentration in the psoriatic plaque suggests elevated 
mast cell activity and degranulation in a chronic inflam-
mation without anaphylactic activation and urticarial 
whealing (25, 26).

Even though mast cells are important in immediate-
type allergy and are involved in physiological skin 
reactions to trauma and infection, they can affect the 
immune system, promote inflammation or even suppress 
it. Pre-formed mediators stored in the secretory granules 

Mast Cells as Regulators of Skin Inflammation and Immunity
Ilkka T. HaRvIMa1 and Gunnar NIlSSON2

1Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, and 2Department of Medicine, Karolinska 
Institutet, Stockholm, Sweden



2 I. T. Harvima and G. Nilsson

include different proteases, histamine, heparin proteo-
glycan, chondroitin sulphate E, acidic hydrolases, and 
various cytokines and growth factors. After activation, 
mast cells can secrete newly-synthesized mediators, in-
cluding prostaglandin D2, leukotriene C4, and a range of 
cytokines, chemokines and growth factors. In addition, 
they can express cell membrane receptors and ligands. 
These molecules can modulate the immune system in 
the skin, e.g. in psoriasis, atopic dermatitis and epithelial 
cancers (1, 13, 27, 28). Therefore, the purpose of this 
review is to discuss the recent findings on the role of 
mast cells in skin inflammation and immunity. However, 
the anaphylactic aspects, urticaria or mastocytosis are 
not dealt with in the review.

ACCUMUlATION OF MAST CEllS IN SKIN 
INFlAMMATION

The number of mast cells is increased in chronic skin 
inflammation, e.g. psoriasis, basal cell carcinoma and 
chronic ulcers. Furthermore, it is the MCTC type of 
mast cell that is typically encountered just beneath 
the epidermis/epithelium, and sometimes even inside 
the epidermis (29–32). Intraepidermal mast cells have 
been found in other chronic inflammatory skin diseases 
showing epidermal proliferation (33, 34).

There are different possibilities for the activation and 
accumulation of mast cells during inflammation. The 
SCF, the ligand for the Kit receptor, is essential for the 
growth, migration, activation and survival of mast cells 
in different experimental models (35–41). In support of 
this, numerous SCF-positive cells have been detected 
in the psoriatic lesion, chronic ulcers and basal cell 
carcinoma (42–44), and even mast cells themselves can 
produce SCF (43, 45). Kit receptor is expressed by mast 
cells in the dermis and by melanocytes in the epidermis 
(42, 46). Furthermore, mast cells show increased Kit 
immunopositivity in the psoriatic lesion, chronic leg 
ulcers, and during skin wound healing (42). In addition, 
it is possible that the accumulation of mast cells is a 
result of the action of prosurvival proteins (47). Indeed, 
we have recently found that mast cells show increased 
levels of Bfl-1 immunoreactivity, an activation-induced 
prosurvival protein, in the lesional skin of psoriasis, 
atopic dermatitis and basal cell carcinoma (Ekoff et al., 
unpublished results).

The recruitment of mast cells and their haemato-
poietic progenitors from the blood circulation can be 
increased. This mechanism can be highlighted by the 
expression of several chemokine receptors on mast cells 
(27). Furthermore, SCF, TGF-β, RaNTES and stromal 
cell-derived factor-1α (CXCL-12) can efficiently induce 
migration of human mast cells in vitro (48–50). Hence, 
chemoattractants produced in the inflamed skin tissue 
and chemokine receptors produced by mast cells could 
explain mast cell accumulation, though it is not known 
to what extent mast cells express these receptors in the 
inflamed skin. In addition to the essential role of SCF, 
there are several other relevant factors that can modulate 
the development or survival of mast cells, including Il-
3, Il-4, Il-5, Il-6 (35), Il-9 (51), thrombopoietin (52), 
nerve growth factor (53), and endothelial cells (54).

MaST CELL TRYPTaSE aND CHYMaSE aS 
REGULaTORS OF SKIN INFLaMMaTION

The major protein in mast cell granules, β-tryptase, is 
a trypsin-like serine proteinase, which has a ring-like 
tetrameric structure with four active centres facing 
towards the central oval pore. Based on this structure, 
tetrameric β-tryptase is resistant to the action of large 
endogenous protease inhibitors, and heparin is needed 
to stabilize the enzyme (55–58). In agreement with this 
resistance to protease inhibitors, tryptase has histoche-
mically been detected as catalytically active on skin 
cryosections from inflamed skin (30, 31, 59).

The pathophysiological significance of β-tryptase is not 
clear. However, there are several experimental findings 
suggesting its role in the activation and recruitment of dif-
ferent cell types, including endothelial cells (60–63), pe-
ripheral blood mononuclear cells, T cells and neutrophils 
(64–66) (Table I). In animal models, tryptase injections 
induce accumulation of neutrophils, eosinophils and other 
cells of the immune system in the skin of guinea pigs 
(67). Interestingly, the PaR-2 receptor is expressed by 
human skin mast cells (18), and the percentage of mast 
cells showing PaR-2 is increased in the psoriatic lesion 
(68) suggesting a possibility for paracrine potentiation 
of inflammation. Furthermore, tryptase may promote 
neurogenic inflammation by activating PaR-2 on nerves 
leading to the release of neuropeptides substance P and 
calcitonin gene-related peptide (69, 70) (Table I).

Table I. Mast cell tryptase can have both stimulatory and inhibitory functions in skin inflammation

Stimulatory function Inhibitory function

Stimulation of angiogenesis and MCP-1 and Il-8 in endothelial cells (60–63) Cleavage of eotaxin and RaNTES (81)
Activation of peripheral blood mononuclear cells and neutrophils for cytokine production (64–66) Cleavage of neuropeptides vIP and CGRP (82–84)
Paracrine or autocrine activation of mast cells through PaR-2 (18, 68) Cleavage of cathelicidin ll-37 (19)
activation of nerves (69, 70) and keratinocytes (72–75) through PaR-2
Activation of metalloproteinases MMP-3 and -9 (76–78) and pro-urokinase (79)

MCP-1: Monocyte chemoattractant protein-1; IL-8: interleukin-8; vIP: vasoactive intestinal peptide; CGRP: calcitonin gene-related peptide; PaR-2: 
protease-activated receptor-2.
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Tryptase can interact with the epidermis, since 
tryptase-positive mast cells are typically situated 
close to the psoriatic epidermis and tryptase degrades 
fibronectin in the basement membrane zone ex vivo 
(29, 30, 71). The enzyme may activate keratinocytes 
directly through activation of PaR-2 on their surface 
(72–75). Tryptase is able to activate metalloproteinases 
(76–78) and pro-urokinase (79), or it can function as 
a gelatinase (80). Thus, tryptase may make space for 
T cells and neutrophils in the extracellular matrix and 
basement membrane zone allowing their migration into 
the epidermis. In contrast to the stimulatory function, 
tryptase may also have inhibitory functions, since it can 
degrade chemokines, neuropeptides and cathelicidin 
ll-37 (19, 81–84) (Table I).

Human α-chymase is a chymotryptic serine proteinase 
that is stored in high quantities in mast cell secretory 
granules. Like tryptase, chymase also binds efficiently 
to heparin, but chymase-heparin proteoglycan com-
plexes are larger in size and are situated in a different 
subregion of the granule from tryptase-heparin proteo-
glycan complexes (85, 86). Thus, tryptase can diffuse 
through the extracellular matrix, whereas chymase tends 
to remain at the activation site (87, 88). In contrast to 
tryptase, chymase is active in the absence of heparin, 
though heparin can regulate the interaction between 
the enzyme and its substrates/inhibitors (32, 89, 90). 
Another distinct difference is that endogenous pro-
tease inhibitors, such as α1-proteinase inhibitor (α1-PI), 
α1-antichymotrypsin (α1-aC) (91), α2-macroglobulin 
(92), secretory leukocyte proteinase inhibitor (90) and 
squamous cell carcinoma antigen-2 (93) can inactivate 
chymase. However, this may be a more complex inte-
raction, since chymase can effectively degrade α1-PI 
and α1-AC (91). Thus, chymase activity is regulated by 
the plasma protease inhibitors α1-PI and α1-AC, which 
are even present in increased levels in mast cells in the 
inflamed skin, as shown histochemically, e.g. in pso-
riasis, atopic dermatitis (94), basal cell carcinoma (31) 
and cutaneous herpes zoster (59). It is probable that 
they also partially inactivate chymase in allergic skin 
wheal reaction (95).

Chymase can be a potent candidate in the recruitment 
of inflammatory cells, since human chymase injected 
into the skin of guinea pigs stimulates the accumulation 
of neutrophils and eosinophils (96), and it stimulates 
monocytes, neutrophils, lymphocytes and eosinophilic 
cells in vitro (97, 98). Chymase may promote inflamma-
tion indirectly as it has been shown to activate pro-IL-1β 
to IL-1β (99), pro-IL-18 to IL-18 (100), and to generate 
a potent chemoattractant, 31-amino acid endothelin-1, 
for neutrophils and monocytes (101). However, chy-
mase may regulate inflammation by degrading IL-6 
and IL-13, and to some extent IL-5 and TNF-α (102). 
Furthermore, chymase can degrade eotaxin (81) and 
neuropeptides substance P and VIP (82, 103). Chymase 

is a potent enzyme, but the effect is dependent on the 
levels of enzymatically active chymase in inflamed 
skin, where increased levels of protease inhibitors can 
be detected. Chymase can affect the epidermis and 
induce blister formation in some conditions, since it 
detaches keratinocytes from substratum and degrades 
fibronectin (32, 104).

MAST CEllS STIMUlATE THE CEllS OF THE 
IMMUNE SYSTEM

The close interaction between mast cells and T cells is 
now well-known, and mast cells can express soluble 
factors, cell surface molecules and co-stimulatory mo-
lecules, which can activate different subsets of T cells 
(13, 28, 105, 106). This stimulatory effect of mast cells 
on T cells is markedly dependent on soluble TNF-α, as 
well as on direct cell–cell interactions between mast 
cell OX40 ligand (OX40l) and T-cell OX40 receptor 
(106–108). Even though there are no data on the level 
of OX40L in mast cells in inflamed skin, mast cells 
are the predominant source of preformed TNF-α in 
normal skin (109), and along with increased mast cell 
numbers TNF-α-positive mast cells are increased in 
number in the lesional skin of psoriasis, atopic derma-
titis and basal cell carcinoma (110, 111). In a recent 
study on co-cultures with mouse mast cells, effector 
T cells and regulatory T cells, concomitant influence 
of mast cell OX40l together with Il-6 from effector 
T cells induced reversal of regulatory T-cell-mediated 
suppression resulting in Th17 cell differentiation (112). 
In other experiments in mice, mast cells and mast 
cell-derived TNF-α enhanced antigen- and Th17 cell-
dependent development of a neutrophil-rich inflam-
matory response in the airways (113) giving further 
support to the assumption that mast cells can promote 
Th17 cell-dependent inflammation in vivo. Neutrophil 
recruitment by mast cell TNF-α and MIP-2 has also 
been shown in a T-cell-dependent delayed-type hyper-
sensitivity reaction in the skin of mice (114). Hence, 
OX40L on mast cells, together with TNF-α and IL-6, 
appear to be essential molecules in promoting tissue 
inflammation. 

Mast cells can secrete other soluble cytokines that are 
relevant in chronic skin inflammation. In the psoriatic 
lesion, mast cells show increased levels of interferon-γ 
immunoreactivity and the cytokine associates with the 
Psoriasis Area and Severity Index. In contrast to pso-
riasis, mast cells in the atopic dermatitis lesions show 
elevated amounts of Il-4 immunoreactivity but are only 
weakly immunopositive for interferon-γ (115, 116). In 
addition, mast cell Il-4 has been shown to associate 
with the size of allergic skin prick-test wheal reaction 
and serum total IgE level in atopic subjects (117).

In addition to OX40l, mast cells have been shown 
to express another member of the TNF superfamily on 
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the cell surface, CD30l, which can activate CD30+ 
lymphoma cell lines in vitro (118). Activation of the 
CD30 receptor on T cells has previously been shown 
to lead to interferon-γ secretion in Th1 cell clones and 
Il-4 and Il-5 secretion in Th2 cell clones (119). In the 
lesional skin of psoriasis, atopic dermatitis and basal 
cell carcinoma, mast cells show increased levels of 
CD30l immunoreactivity. Furthermore, the number 
of cells with CD30 receptor is increased in the upper 
dermis of these lesions as well (22, 111). In vitro and 
ex vivo experiments demonstrated that mast cells can be 
induced by means of reverse signalling through CD30 
ligand for chemokine expression, such as Il-8, MIP-
1α and MIP-1β (22). Therefore, during the interaction 
between CD30 ligand on mast cells and CD30 receptor 
on T cells both cells are presumably activated in the 
inflamed skin lesion.

Mast cells can express several immunologically active 
molecules on the cell surface, which are related to T-cell 
activation through antigen presentation. For example, 
mast cells can express MHC class I and MHC class II 
and therefore act as antigen-presenting cells to T cells in 
vitro (28, 105). Moreover, human mast cells have been 
shown to express MHC class II and to present staphylo-
coccal superantigens to CD4+ T-cell hybridomas, giving 
rise to T-cell activation (120). Interestingly, human cord 
blood-derived mast cells have been shown to bind and 
phagocytoze several bacteria strains in vitro, such as 
Staphylococcus aureus, leading to death of bacteria and 
TNF-α secretion from mast cells (121).

The presence of co-stimulatory molecules is important 
for effective T-cell activation upon antigen presentation. 
In line with this requirement, mouse and human mast 
cells cultured in vitro can express CD80 and CD86, mo-
lecules that are essential in such a co-stimulation (120, 
122). Human mast cells have, in fact, been shown to 
express a range of other cell surface molecules as well, 
such as the CD antigens and adhesion molecules ICAM-
1, VlA-4, Mac-1 and to some extent lFA-1 (123, 124). 
The adhesion molecules, especially ICAM-1, can stimu-
late T cells, but mast cells are activated upon interaction 
with activated T cells resulting in enhanced mast cell 
degranulation, migration and adhesion to extracellular 
matrix and endothelial cell ligands (125).

like professional antigen presenting cells, mast cells 
can have the capability of migration to lymph nodes 
as evidenced by several experimental findings. For 
example, mouse experiments have shown that during 
dinitrofluorobenzene-induced contact hypersensitivity 
mast cells are activated and the cells migrate to draining 
lymph nodes where they can mediate T-cell recruitment 
(126). In addition to mast cells, mast cell mediators can 
diffuse to lymph nodes. For example, activation of mast 
cells in mouse footpad by injection of Escherichia coli 
or compound 48/80 resulted in rapid draining of mast 
cell-derived preformed TNF-α to lymph nodes where 

it induced hypertrophy and recruitment of circula-
ting T cells (127). Further complexity provides the 
study by Jawdat et al. (128), who demonstrated that 
the lymph node activation in mice can be mast cell 
TNF-α-dependent in an allergic response or TNF-α-
independent in a response to the injection of bacterial 
peptidoglycan.

Mast cells and their mediators can activate profes-
sional antigen presenting cells, langerhans’ cells and 
dendritic cells for migration. In a mouse model, mast 
cell activation in ear pinna induced by an IgE-dependent 
mechanism or by bacterial peptidoglycan was crucially 
involved in langerhans’ cell migration to draining 
lymph nodes (128). In another mouse model of FITC-
induced contact hypersensitivity in ear pinna, mast cells 
and their TNF-α were essential for optimal migration of 
dendritic cells to local lymph nodes (129). Interestingly, 
mast cells can release exosomes that harbour exogenous 
antigens. These exosomes can stimulate maturation 
of mouse dendritic cells leading to enhanced antigen 
presentation to T cells (24). Furthermore, histamine can 
play a role in the activation of antigen presenting cells, 
as shown in co-cultures of in vitro-developed human 
mast cells and monocyte-derived dendritic cells. In 
this work, mast cells were activated by FcεRI cross-
linking, which then induced maturation of dendritic 
cells. These cells in turn induced polarization of naïve 
T cells towards Th2 lineage, and the effect was largely 
dependent on histamine and mast cell-dendritic cell 
contacts (130). In fact, the stimulation of histamine 
receptor H1 on dendritic cells leads to the production of 
proinflammatory cytokines, Th1 priming and increased 
antigen presenting activity, but the stimulation of H2 
receptor favours Il-10 induction and Th2 or tolerance 
priming (131).

MaST CELLS aS SUPPRESSORS OF THE IMMUNE 
SYSTEM

Mast cells can be involved in the induction of tolerance 
or immunosuppression (105). For example, mast cells 
induce regulatory T-cell-dependent peripheral tolerance 
in a mouse model of skin allografts, and this reaction 
is related to the production of Il-9 from activated 
regulatory T cells (132). However, this tolerance to 
skin allografts in mice can be reversed by intragraft or 
systemic mast cell degranulation, giving rise to acute 
T-cell-dependent rejection and loss of the suppressive 
functions of regulatory T cells (133). The interesting 
role of Il-9, a mast cell growth and activation factor, 
has recently been shown in another mouse model, too. 
In this work on nephrotoxic serum nephritis model 
in mice, regulatory T cells, Il-9 secreted from them, 
and mast cells recruited by them into kidney-draining 
lymph nodes were crucial for nephroprotective and 
anti-inflammatory effects (134). In a recent study with 
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mouse cells in vitro, bone marrow-derived mast cells 
could induce increased percentage of CD4+, CD25+, 
FoxP3+ regulatory T cells from isolated spleen T 
cells and this induction was partially inhibited by a 
neutralizing anti-TGF-β1 antibody in the co-culture 
system (135). On the other hand, FcεR-activated bone 
marrow-derived mouse mast cells can inhibit through 
H1 receptor the suppressive function of mouse CD4+, 
CD25+, FoxP3+ regulatory T cells over responder T 
cells (136).

Previously, mast cells have been thought to be proin-
flammatory in models of contact hypersensitivity, but 
this is not always the case. Interestingly, in a mouse 
model of contact hypersensitivity and using prolonged 
monitoring for up to 15 days after challenge, mast cells 
were shown to limit the inflammatory skin reaction 
by producing the immunosuppressive cytokine Il-10. 
Furthermore, mast cells were able to attenuate the mouse 
skin reactions induced by multiple challenges with ultra-
violet irradiation for up to 30 days (137). One possible 
mechanism for this UV-induced immunosuppression has 
recently been clarified in this mouse skin model: chronic 
low-dose UvB irradiations induce the production of 1α, 
25-dihydroxyvitamin D3, which, in turn, stimulates the 
corresponding vitamin D receptor on mast cells, resulting 
in Il-10 secretion and immunosuppression, but other 
mechanisms may also be involved (138). In addition, im-
munosuppression of mouse skin contact hypersensitivity 
reaction by Uv-irradiation can be dependent on CXCR4-
positive mast cells, which migrate from the skin to the 
B-cell area of draining lymph node caused by the action 
of the chemoattractant CXCl-12 (139). Interestingly, the 
interaction between mast cell CXCR4 and CXCL-12, are 
important in the suppression of contact hypersensitivity 
reaction in mouse skin, an immunosuppression, which 
was induced by the application of the organic chemical 
mixture, JP-8 jet propulsion fuel, onto the mouse skin 
(140). The role of Il-10 has been described in another 
mouse skin model, where mast cells and concomitant Il-
10 expression in lymph nodes were critical intermediaries 
in the mosquito bite-induced suppression of delayed-type 
hypersensitivity reaction (141). Mast cell Il-10 induced 
by UV irradiation may not only inhibit cellular delayed-
type hypersensitivity, but it can inhibit humoral immune 
responses. This possible mechanism was demonstrated 
recently by showing that UV irradiation of mouse skin 
blocks germinal centre formation in draining lymph 
nodes, antibody secretion, and T follicular helper cell 
function. Il-10 derived from mast cells was found to 
be an essential factor in these events and Il-10+ mast 
cells were detected in the draining lymph nodes 24 h 
after UV irradiation (142). Human mast cells have been 
shown to express IL-10 (143) and TGF-β (144). Hence, 
these cytokines may act in human skin to modify im-
mune responses, though it is not known to what extent 
they are expressed in mast cells in diseased human skin. 

In addition, Il-10 released from human mast cells can 
have the capability of inhibiting mast cell function in an 
autocrine or paracrine fashion (145).

Mast cells are typically increased in number in dif-
ferent cutaneous malignancies and they are assumed 
to participate in skin carcinogenesis by different me-
chanisms, such as immunomodulation, induction of 
angiogenesis, degradation of the extracellular matrix 
components, and promotion of tumour cell mitosis. 
The development of skin carcinomas requires malig-
nant transformation and compromised immune system 
(146). UV irradiation is the major causative factor for 
skin carcinogenesis and mast cells evidently have a 
role in UV-induced immunosuppression using different 
mechanisms (137–139, 142, 146). The recruitment of 
immunomodulatory or immunosuppressive mast cells to 
the skin tumour may be due to carcinoma cell-derived 
SCF and Kit receptor on mast cells (42, 43, 111). There 
is recent experimental evidence to support this mecha-
nism. First, in a mouse model of hepatocarcinoma SCF 
from tumour cells promoted the recruitment of injected 
bone marrow-derived mast cells to the tumour. On the 
other hand, activated mast cells were shown to release 
adenosine, which inhibited effector T cells and natural 
killer cells, and immunosuppression was enhanced by 
the increased presence of FoxP3+ regulatory T cells in 
the tumour (147). Secondly, in this same mouse hepato-
carcinoma model, injected mast cells induced the SCF/
Kit-dependent appearance of GR-1+, CD11b+ myeloid-
derived suppressor cells. In addition, regulatory T cells 
increased in the tumour and showed increased expres-
sion of ectoenzymes CD39 and CD73, molecules, 
which in turn can produce inhibitory adenosine from 
ATP. Furthermore, regulatory T cells produced Il-9, 
which was essential for the tumour-promoting effects 
and survival time of mast cells (148). Nevertheless, the 
interaction between mast cells and regulatory T cells in 
cancer may be complex. Recently, in human colorectal 
cancer and murine polyposis it was demonstrated that 

Fig. 1. a hypothetical model for the function of mast cells as proinflammatory 
or immunosuppressive cells in skin inflammatory diseases.
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this interaction can lead to mast cell-induced generation 
of proinflammatory regulatory T cells without losing 
their T-cell-suppressive properties (149). This finding 
may support the concept that a cancer is often charac-
terized by inflammation and peritumoural inflammatory 
cells, but sufficient immunosuppression is required to 
prevent excessive inflammation and harmful damage 
to the tumour.

CONClUSION

Current knowledge indicates that mast cells are involved 
in chronic skin inflammatory diseases. a range of diffe-
rent factors is known to activate mast cells, and subse-
quently these cells can release rapidly or slowly effective 
preformed and newly-synthesized soluble mediators. 
Furthermore, mast cells can express cell surface ligands 
and receptors, and all these different mediators and cell 
surface molecules can be either proinflammatory or im-
munosuppressive (Fig. 1). Mast cells can potently recruit 
the cells of the immune system, e.g. T cells, neutrophils 
and eosinophils, to the site of skin inflammation, and 
mast cells can stimulate the maturation of langerhans’ 
cells and dendritic cells and their migration to lymph 
nodes. Moreover, mast cells are capable of migrating to 
draining lymph nodes and activating the immune cells 
within them. Mast cells show plasticity in the expression 
of cytokines and TNF family ligands in skin inflamma-
tory diseases, such as psoriasis, atopic dermatitis and 
basal cell carcinoma. New exciting functions for mast 
cells have emerged during recent years – induction of 
tolerance or immunosuppression, and protection from 
infections and toxins. However, the current evidence 
comes mostly from cell culture and animal models and 
further studies are required to verify the situation in hu-
mans. Further research is required into the mechanisms 
that switch proinflammation to immunosuppression or 
vice versa (Fig. 1).
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