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Despite advances in treatment and surveillance, mela-
noma continues to claim approximately 9,000 lives in the 
US annually (SEER 2013). The National Comprehensive 
Cancer Network currently recommends ipilumumab, 
vemurafenib, dabrafenib, and high-dose IL-2 as first line 
agents for Stage IV melanoma. Little data exists to guide 
management of cutaneous and subcutaneous metastases 
despite the fact that they are relatively common. Existing 
options include intralesional Bacillus Calmette–Guérin, 
isolated limb perfusion/infusion, interferon-α, topical 
imiquimod, cryotherapy, radiation therapy, interfe-
ron therapy, and intratumoral interleukin-2 injections. 
Newly emerging treatments include the anti-program-
med cell death 1 receptor agents (nivolumab and pem-
brolizumab), anti-programmed death-ligand 1 agents, 
and oncolytic vaccines (talimogene laherparepevec). 
Available treatments for select sites include adoptive T-
cell therapies and dendritic cell vaccines. In addition to 
reviewing the above agents and their mechanisms of ac-
tion, this review will also focus on combination therapy 
as these strategies have shown promising results in clini-
cal trials for metastatic melanoma treatment. Key words: 
Stage III; Stage IV; IL-2; CTLA-4; PD-1.
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There have been over 1,500 academic papers published 
on the use of traditional chemotherapy for metastatic 
melanoma with no evidence for survival benefit. Recent 
advances in strategies to either block signal transduction 
(BRAF inhibition) and/or enhance anti-tumor immune 
responses (CTLA-4 blockade) have led to the first clinical 
trials in history where treatment has been associated with 
a survival benefit. To date, these survival benefits have 
only been modest but they do pose a proof of concept: 
highly targeted therapeutic strategies for cancer can 
increase survival (1). 

Patients with Stage IV melanoma continue to have a 
poor prognosis, with a mean survival of 8–10 months 
in large cohort analysis studies (2). For a more accurate 
prognosis, patients with stage IV disease can be further 
subdivided into those with only cutaneous metastases 
(IVa), lung metastases (IVb), or other visceral metas-
tases (IVc) to yield associated 5-year survival rates of 
18.8%, 6.7%, and 9.5%, respectively (2). Patients with 
cutaneous melanoma metastases (Stage IIIb or IVa) are 
frequently treated with local excision; however this 
treatment approach does not address the microscopic 
in-transit malignant cells present which often give 
rise to future tumors. BRAF inhibition or cytotoxic T-
lymphocyte antigen 4 (CTLA-4) blockade have emer-
ged as useful options for IVb and IVc patients, but it 
is unclear if these agents should be applied to patients 
with stage IIIb or IVa disease. Herein, we will review 
all treatment modalities and explore future directions 
for patients with advanced melanoma including patients 
with cutaneous only metastases.

SURGERY 

Cutaneous melanoma metastases come in 3 varieties: 
satellite within 2 cm from the primary tumor, in transit 
which are > 2 cm from the primary tumor but within 
the same region as the primary, and distant metasta-
ses outside of the region of the primary tumor. Both 
satellite and in transit metastases occur via dermal 
lymphatic circulation and are designated as N2c in the 
TNM staging system (2). Patients with N2c disease 
without nodal metastasis have a 60% 5-year survival 
rate versus 36% for those with synchronous nodal 
metastases (3). Distant dermal metastases imply a 
hematogenous route of travel, allowing for cutaneous 
deposition of melanoma cells far from the primary 
site. Currently there is no gold standard therapy for 
dermal metastases but surgery is an attractive option 
because patients are quickly rendered “disease-free” 
with relatively limited associated morbidity. In cont-
rast, systemically administered therapies require pro-
longed treatment courses to achieve relatively inferior 
local response rates. In addition to effective palliative 
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management of local disease, excision of systemic, 
particularly solitary lung melanoma metastases may 
also increase patient survival (4). Data in support of 
this is mainly from patients with advanced melanoma. 
Wong et al. (5) reported a 5-year survival rate of 20% 
in 144 patients who underwent surgical resection of 
non-regional melanoma metastases and a phase II trial 
by the Southwest Oncology Group reported overall 3- 
and 4-year survival rates of 36% and 31%, respectively, 
in stage IV melanoma patients (6). Other retrospective 
studies have demonstrated similar numbers. However, 
selection bias could have contributed to the excellent 
survival rates reported in these studies. 

Because surgery alone cannot identify and address 
microscopic metastases, clinical trials are testing 
combination strategies such as surgical resection in 
conjunction with systemic targeted therapies. For ex-
ample, prior to the advent of targeted immunotherapy, 
a Malignant Melanoma Active Immunotherapy Trial 
(MMAIT) reported 5-year overall survival rates of 
42.3% and 63.4% (stage IV and III, respectively) using 
postoperative adjuvant immunotherapy with Bacillus 
Calmette-Guerin (BCG) and an allogeneic melanoma 
vaccine (MCV) (7). More recent approaches are outli-
ned in later sections.

ISOLATED LIMB PERFUSION/ISOLATED LIMB 
INFUSION

Traditionally, locally recurrent metastatic melanoma of 
the limb has been treated with surgery, chemotherapy, 
and finally amputation as the cancer progresses. More 
recently, isolated limb perfusion (ILP) has emerged 
as an effective limb salvaging therapy for widespread 
regional cutaneous and subcutaneous metastases. In 
ILP, high local doses of chemotherapy are delivered to 
the patient under an extracorporeal circuit that isolates 
the affected limb, thereby avoiding systemic toxicity. 
The rationale of this delivery system is that high local 
doses of cytotoxic agents can be delivered with mini-
mal systemic adverse events. Early trials have reported 
overall response rates of 30–60% with half achieving 
complete remission (8).

ILP is most commonly performed with the alky-
lating agent melphalan, ideally under hyperthermic 
conditions. Hyperthermia enhances the cytoxicity of 
melphalan and increases its uptake into neoplastic cells 
(9–11). Addition of hyperthermia to melphalan perfu-
sion has been found to increase overall response rates 
to 80–90% and complete response rates to 25–60%.

More recently, the addition of tumor necrosis factor 
(TNF) and interferon (IFN)-γ to melphalen perfusion 
has been found to increase overall response to ILP.  In 
a recent phase III trial, the combination of TNF, IFN-γ, 
and melphalan achieved a complete response rate of 
80% (12). Subsequent studies that included TNF in 

combination with melphalan all yielded very good 
response rates, with the exception of one randomized 
control trial (13) which has received criticism for the 
timing of its endpoint analysis and uniformly low re-
sponse rates in both groups. In a systematic review of 
22 studies, 556 ILP’s with TNF + melphalan yielded a 
median complete response of 68.9% compared to 46.5% 
with 562 ILP’s with melphalan alone (14).

Although ILP achieves high initial response rates, a 
lack of comparative trials precludes any reasonable at-
tempt at characterizing survival benefit. Many believe 
that ILP does not impart an overall survival or disease-
free survival benefit (15). One center’s experience with 
103 patients who had received ILP reported a 5-year 
overall survival rate of 26% and disease-free survival 
of 12% (16).

A similar technique, isolated limb infusion (ILI), was 
developed in the 1990’s as a less invasive alternative 
to ILP. ILI differs from ILP in that it is performed per-
cutaneously rather than surgically (17). Although no 
trial has compared the two, ILI has produced similar 
response rates to ILP and appears to be a viable alter-
native in patients who are unfit for or who do not wish 
to undergo ILP.

CRYOTHERAPY

Cryotherapy with liquid nitrogen was previously used 
as a non-invasive targeted treatment for limited cuta-
neous metastatic melanoma (18). Theoretically, this 
therapy results in tumor antigen release through local 
trauma to the area and thus has the potential to elicit a 
systemic anti-melanoma immune response. However, 
the tumor-specific immune response following cryo-
therapy seems to be inferior when compared to other 
destructive modalities (19). 

RADIATION THERAPY

Radiation therapy (RT) is used in 1–6% of patients with 
melanoma in the US. It is commonly used as adjunct 
therapy or as palliative therapy, particularly for patients 
with brain metastases, delivered as sterotactic gamma 
knife radiosurgery (20). In the setting of inoperable 
disease, RT is a reasonable option for palliation. In one 
study employing high dose therapy, reported response 
rates ranged from 67–100%, although in practice this 
is seldom observed (21). 

One potential benefit of RT over surgical management 
is that RT can possibly induce an abscopal (away from 
the target) effect in which both the treated tumor, as well 
as non-irradiated sites, show a response to the treatment. 
Although the mechanism for the abscopal effect is not 
well characterized, it is thought to be immune-mediated. 
RT can promote cross-priming, the process by which 
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released tumor antigens are presented in the context 
of MHC class I molecules by dendritic cells. Locally 
activated CD8+ T cells can then migrate to tumors at 
distant sites and induce tumor lysis (22). Recent phase 
I trials of stereotactic body radiotherapy in combination 
with IL-2 in 7 patients with metastatic melanoma resul-
ted in a 71.4% response rate (23). Currently, patients 
are being recruited for a clinical trial to compare IL-2 
alone versus IL-2 with RT (NCT01416831).

BRAF INHIBITION

The BRAF gene encodes for a serine/threonine kinase 
that participates in the MAP kinase pathway (24). 
Mutations in the BRAF gene are present in 40–70% 
of melanomas, leading to constitutive activation and 
uncontrolled cellular proliferation. Vemurafinib (Table 
I) and dabrafenib are BRAF inhibitors specific to mela-
nomas harboring the BRAF V600E and V600E/K muta-
tions, respectively (25–27). A phase III trial compared 
vemurafinib to dacarbazine in patients with previously 
untreated, unresectable stage III/IV melanoma (28). The 
vemurafenib arm demonstrated superior overall survival 
(86% versus 64% at 6 months) and progression-free 
survival (median 5.3 months versus 1.6 months when 
compared to dacarbazine alone). The overall response 
rate was 48% for vemurafenib and 5% for dacarbazine. 
Given vemurafenib’s superior response, the trial was 
stopped early at interim analysis and crossover from da-
carbazine to vemurafenib was suggested (28). A subse-
quent single-arm phase II trial with a median follow-up 
of 12.9 months demonstrated a median overall survival 
of 15.9 months for vemurafenib-treated melanoma pa-
tients; 32.9% of the vemurafenib responders (complete 
and partial) maintained their response through the end 
of the trial (1). A combination of surgical excision with 
adjuvant vemurafenib is currently being studied in an 
ongoing trial (NCT01667419), and neoadjuvant therapy 
to decrease tumor volume prior to surgical intervention 
in otherwise inoperable tumors is also an area of active 
investigation. 

Although the increase in survival with vemurafenib 
alone has been modest, combination therapies using 
this agent along with other targeted therapies and 
immunotherapies, are currently under investigation. 
One approach using targeted therapies will require 
understanding the mechanisms involved in the deve-
lopment of vemurafenib resistance and subsequently 
design multidrug regimens that block these survival 
pathways. In fact, identifying these resistance pathways 
in a given patient may allow for a more “personalized 
medicine” approach (29). A phase II clinical trial of 
BRAF V600E-positive patients treated with oral ve-
murafenib found that the reactivation of MAPK, as 
observed by elevated ERK1/2 phosphorylation levels, 
was due to the appearance of secondary mutations in 
NRAS and MEK, such as NRASQ61, MEK1Q56P, and 
MEK1E203K (30, 31); however a preexisting MEK1 
mutation prior to the use of vemurafenib did not pre-
dispose to resistance (32). Additional mechanisms of 
resistance to BRAF inhibitors include the activation of 
MAPK-redundant signaling through the overexpres-
sion of receptor tyrosine kinases, resulting in AKT 
activation and RAS-CRAF-MEK signaling (33). To 
counteract these resistance mechanisms, a phase III 
trial is studying the efficacy of vemurafenib plus a MEK 
inhibitor versus vemurafenib alone (NCT01689519). 
Ongoing studies are also looking at using high dose 
IL-2 (NCT01683188); decitabine (NCT01876641); and 
bevacizumab (NCT01495988 ), a monoclonal antibody 
inhibitor of VEGF-A with vemurafenib in BRAF V600E 
positive patients. 

Patients treated with vemurafenib have an increased 
incidence of squamous cell carcinoma and kerato-
acanthoma, especially in older patients with chronic 
sun damage. The increased incidence of squamous cell 
carcinoma in these patients has been shown to occur 
as a result of comorbid mutations in the RAS gene in 
patients that have a mutation in BRAF. Thus, conco-
mitant treatment with a MEK inhibitor is also a means 
to counteract this side effect and reduce the frequency 
of squamous cell carcinomas in vemurafenib-treated 
patients (34). 

IMMUNOTHERAPY

Systemic IL-2

In 1998, the FDA approved high-dose intravenous IL-2 
as therapy for metastatic melanoma. IL-2 is a glycopro-
tein secreted by T helper cells. It promotes T-cell proli-
feration and the development of lymphokine-activated 
killer (LAK) cells, which have the ability to directly 
lyse tumor cells (Fig. 1) (35). Intravenous delivery of 
IL-2 produces an overall response rate of 16% and a 
complete response rate of 6% in patients with metastatic 
melanoma (36). However, due to IL-2-induced vascular 

Table I. Therapies used to treat melanoma

Treatments Evidencea Reference

BRAF inhibitor 
  Vemurafenib 1 1, 25, 28
Intralesional IL-2 4, 5 37–44 
Adoptive cell therapy 6 100–103
Anti-CTLA4 therapy
  Tremlimumab (CP-675,206)
  Ipilimumab (MDX-010)
  Ipilimumab and Dacarbazine

1
1
1

104, 105, 111
107, 110, 112, 114
113

Anti-PD-1
  Pembrolizumab
  Nivolumab

1 
4

117, 118
116

aEvidence: 1: Randomized controlled trial; 2: Case series; 3: Case report; 
4: Phase I study; 5: Phase II study; 6: Cohort study.
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leak syndrome (VLS) and other associated toxicities, 
intravenous IL-2 therapy is limited to relatively healthy 
individuals. IL-2 is also currently being investigated in 
combination with anti-CTLA-4 therapy with lympho-
depletion and adoptive cell transfer (NCT01701674).

Intralesional IL-2 

To reduce systemic toxicity and increase local thera-
peutic effects, many groups have adopted an intrale-
sional approach for IL-2 (see Table I) administration 
for treatment of cutaneous melanoma metastases. Three 
different clinical trials of intralesional IL-2 resulted 
in complete response rates of 62.5%, 40.7%, and 69% 
(37–39). Similarly, a case series of 39 patients treated 
with intralesional IL-2 reported a complete response 
rate of 76% (40), and another demonstrated a 100% 
response rate when 64 cutaneous and subcutaneous me-
tastatic lesions in 3 patients were treated with biweekly 
administration of high-dose intralesional IL-2 in com-
bination with imiquimod (41). Although these results 
are exciting, one concern is the possibility that intra-
lesional IL-2 will expand regulatory T cells (Tregs). 
Tregs, an inhibitory T-cell population, are known to 
express the high affinity IL-2 receptor, CD25, which 
allows them to readily expand in response to IL-2 (42, 
43). Thus, intralesional IL-2 may promote a systemic 
suppressive response by expanding Tregs. However, 
there are a few studies to suggest that patients treated 
with intralesional IL-2 have an increase in inflamma-
tory T cells rather than Tregs and it has been suggested 
that these patients may live longer. Specifically, one 
study demonstrated an increased number of IFN-γ 

secreting T cells after administration of intralesional 
IL-2 (44) and a phase II clinical trial reported that there 
were no additional deaths from melanoma in patients 
who had survived for at least 25 months after initiation 
of intralesional IL-2 therapy, regardless of stage (38). 
These results are promising given that the reported 
5-year survival for patients with cutaneous melanoma 
metastases is approximately 18% (2, 45). Additional 
studies will be needed to verify these results, especi-
ally since prior studies with intravenous IL-2 failed 
to demonstrate improvement in overall survival (46). 
We consider intralesional IL-2 regimens, especially in 
combination with topical imiquimod, to be a reasonable 
first line treatment for patients with cutaneous mela-
noma metastases. Ideally, future studies will compare 
these treatments head-to-head against surgical excision 
and/or systemic medications.

Imiquimod/toll-like receptor activation

Through activation of immune cells via the toll-like 
receptor 7 (TLR7)-MyD88-dependent signaling path-
way, topical application of imiquimod induces the 
production of a variety of cytokines including IFN-α, 
TNF, and IL-12 (47, 48). This in turn contributes to 
the strong anti-tumor and anti-viral properties of this 
small molecule (49–51). Several neoplasms have 
been successfully treated with imiquimod: basal cell 
carcinoma, squamous cell carcinoma, extramammary 
Paget’s disease, lymphoma, and melanoma (37, 49, 50, 
52–58). However, some tumors are resistant to imiqui-
mod therapy. It is well documented that subcutaneous 
and dermal melanomas are resistant to imiquimod (37, 
59). The resistance mechanisms are multifactorial. 
Metastatic melanomas may develop resistance to the 
death receptor-independent apoptotic pathways indu-
ced by imiquimod (60). Secondly, poor drug penetra-
tion may limit the activation of plasmacytoid dendritic 
cells, which are normally recruited and activated in 
response to topical imiquimod (61–63). Finally, some 
melanocytic neoplasms such as dysplastic nevi seem 
to be uniformly resistant to imiquimod therapy (61, 
64). Given these resistance mechanisms, we do not 
recommend imiquimod as a monotherapy option for 
treatment of cutaneous metastases.

Bacillus Calmette-Guérin

BCG is an attenuated live bovine tuberculosis bacillus 
that is used as a vaccination for human tuberculosis. 
BCG has also been employed to treat a variety of dif-
ferent malignancies. Initial attempts using BCG to 
treat melanoma showed some promise, but ultimately, 
enthusiasm for this modality decreased due to poor ef-
ficacy and the risk of death due to anaphylactic shock 
and development of infectious granulomas at sites of 
injection (65, 66). However, interest in BCG is again 

Fig. 1. Exogenous interleukin (IL)-2 promotes anti-melanoma immune 
responses. IL-2 is a cytokine usually produced by activated CD4+ T cells. 
When used as a melanoma therapeutic, it is delivered either systemically 
or intralesionally. IL-2 promotes the proliferation, differentiation, and 
survival of CD4+ and CD8+ T cells as well as natural killer (NK) cells. The 
IL-2-induced expansion of these cells can occur in an antigen-specific or 
antigen-nonspecific fashion.
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on the rise given a number of reports identifying an 
inverse correlation between the incidence of cancer 
and the frequency of early life vaccinations with BCG 
or vaccinia in one retrospective analysis (67). In these 
studies, vaccinated patients experienced a 50% reduc-
tion in melanoma mortality risk over a study period 
of 5 years (67, 68). An inverse correlation was also 
noted for a history of BCG or vaccinia vaccination and 
Breslow’s thickness, which is an important prognostic 
marker (67). The mechanism for this therapeutic be-
nefit is unknown but it is interesting to note that both 
BCG and vaccinia, have sequence homologies with 
the HERV-K-MEL antigen, a product of a pseudo-gene 
closely related to endogenous retroviral genes (68).

Current clinical studies are evaluating the efficacy of 
different BCG-based treatment strategies for metastatic 
melanoma. For example, intralesional administration of 
BCG followed by intravenous infusion of ipilimumab 
in patients with stage III and stage IV melanoma is 
currently under investigation (NCT01838200). Other 
studies are evaluating treatment with CSF470 (a vaccine 
consisting of 4 lethally irradiated melanoma cell lines) 
plus BCG and molgramostin (rHuGM-CSF) for stage 
II and III melanoma (NCT01729663). 

Interferon therapy

IFN-α is a type 1 interferon endogenously produced 
by macrophages, T cells, and natural killer cells that 
has been shown to have anti-tumor properties (69, 
70). In humans, the benefit of IFN-α in the treatment 
of metastatic melanoma is controversial as the data 
on survival outcomes have been largely inconsistent 
between different trials. Initial meta-analyses of ran-
domized control trials reported that IFN-α therapy is 
associated with a statistically significant improvement 
in disease-free survival but not in overall survival (71, 
72). However, in a later randomized controlled trial, 
444 patients who had undergone complete lymph node 
dissection were randomized to receive either adjuvant 
subcutaneous IFN-α 2a (3 MU) 3 times weekly or ob-
servation alone; the IFN therapy resulted in significantly 
improved disease-free survival (39% versus 27% at 4 
year follow-up) and overall survival (59% versus 42% 
at 4 year follow-up) compared to observation (73). In 
another large randomized controlled trial, 1,256 patients 
with resected stage III melanoma were randomized to 
pegylated IFN-α 2b or observation for a median treat-
ment duration of 12 months (74). This group reported 
a recurrence-free survival advantage in the IFN group 
(45.5% versus 38.9% over 4 years) but no difference 
in overall survival between the groups (74). Finally, 
in a meta-analysis of 14 randomized controlled trials, 
Mocellin et al. (75) reported significantly improved 
disease-free survival (18% risk reduction) and overall 
survival (11% risk reduction) in patients receiving IFN 
therapy. Despite the inconsistencies in overall survival 

outcomes, it does appear that adjuvant IFN-α therapy 
has a disease-free survival benefit in certain patients. 
More recent studies have indicated that both ulceration 
and tumor stage are predictive of IFN efficacy (76). 
However, treatment with IFN-α is also associated with 
significant toxicities. Many patients in the treatment 
groups experience severe fatigue, depression, and 
hepatotoxicity. In one study, pegylated IFN had to be 
discontinued due to toxicity in 31% of the patients (74). 

With regards to treating cutaneous disease, there are 
several published case reports of intralesional IFN-α 
successfully treating melanoma in situ, either primary 
or recurrent (77–79). There are also published case 
reports of cutaneous metastases of melanoma as well 
as anorectal and esophageal melanoma responding to 
intralesional injections of IFN-β (80–84). 

Cancer vaccines

Cancer vaccines attempt to activate the immune 
system to recognize and destroy cancer cells. Both 
autologous and allogenic vaccination strategies have 
been employed but response rates have been usually 
low ranging from 10 to 20%. These vaccines can be 
univalent or polyvalent in design. Univalent vaccines 
stimulate the immune system to respond against one 
specific antigen or carbohydrate moiety. Polyvalent 
vaccines allow the host to mount an immune response 
against multiple tumor antigens. Polyvalent strategies 
may incorporate allogenic whole cells, autologous tu-
mor cells, shed tumor antigens, recombinant proteins, 
or tumor lysates (85). 

Peptides derived from the melanoma antigens 
MART-1, Melan-A, gp100, and tyrosinase have all 
been employed in cancer vaccines. Vaccination with the 
gp100:209–217(210M) peptide resulted in high levels 
of circulating T cells which could recognize and kill 
melanoma cancer cells in vitro (86). In a single-group, 
phase II study, patients with metastatic melanoma were 
immunized with a gp100:209–217(210M) peptide 
vaccine in Montanide ISA-51 (incomplete Freund’s 
adjuvant), followed by high-dose IL-2. This resulted in 
an objective clinical response in 42% of patients (87). 

Schwartzentruber et al. (86) conducted a randomi-
zed, phase III trial involving 185 patients with stage 
IV or locally advanced stage III cutaneous melanoma. 
Patients were randomly assigned to receive IL-2 alone 
or gp100:209–217(210M) plus Montanide ISA-51 once 
per cycle, followed by IL-2. The vaccine–IL-2 group, 
as compared with the IL-2-only group, had a significant 
improvement in overall clinical response (16% versus 
6%, p = 0.03), as well as longer progression-free survival 
(2.2 months versus 1.6 month p = 0.008). The median 
overall survival in the vaccine–IL-2 group was longer 
than in the IL-2–only group (17.8 months versus 11.1 
months p = 0.06). Thus, combining melanoma vaccines 
with IL-2 seems to add a modest benefit over IL-2 alone. 
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Carreno and colleagues from Washington University 
in St. Louis (88) investigated the role of IL-12p70 
in melanoma patients by developing a vaccine with 
CD40L/IFN-γ –matured, IL-12p70–producing dendri-
tic cells. Of the 7 patients treated with the vaccine, 6 
developed sustained immunity against 3 separate gp100 
melanoma antigens but only 3 of the 6 had a clinical 
response (1 complete remission and 2 partial respon-
ses). The production of IL-12p70 positively correlated 
with the development of antigen-specific CD8 T cells. 
Non-responders were seen to have lower IL-12p70 
concentrations. Of note, non-responders were found to 
have a defect in IL-12p35 transcription, which led to 
decreased IL-12p70 production. 

Oncolytic vaccines

Intralesional therapy for solid tumors has certain theo-
retical advantages over intravenous immunotherapy. 
For example, designing a melanoma-specific vaccine or 
engineering a T-cell adoptive transfer strategy will be 
difficult without specific knowledge of the tumor-deri-
ved determinants expressed by a particular melanoma. 
Unfortunately, MHC haplotypes alone cannot predict 
what antigens will be presented by a tumor because 
HLA-matched individuals may still respond to different 
antigenic determinants due to subtle differences in their 
antigen processing machinery (89). With intralesional 
immunotherapy, advanced knowledge of the melanoma 
antigens or the T-cell determinant structure is not requi-
red. Theoretically, the intralesionally-administered im-
munotherapy will induce a systemic immune response 
directed against the naturally processed and presented 
tumor antigens. For this reason, intralesional therapy 
holds great promise for the treatment of metastatic 
melanoma, especially cutaneous metastases. 

In theory any systemic cancer vaccine can also be 
administered intralesionally. However, one oncolytic 
vaccine was specifically designed for the intralesional 
route. Talimogene laherparepvec (Oncovex or T-Vec) is 
a herpes simplex virus genetically engineered to express 
GM-CSF. Since it lacks ICP 34.5 and ICP 47, the virus 
prefers to grow in malignant cells. Thus, when admi-
nistered intralesionally, it will specifically lyse tumors 
cells and create a high local concentrations of GM-CSF 
(90–92). The GM-CSF then attracts dendritic cells, 
which in turn process the remnants of dying melanoma 
cells and present these tumor antigens to T cells. In a 
phase II trial, Oncovex vaccination produced an objec-
tive clinical response rate of 26% in patients with stage 
IIIC or IV melanoma (93). Complete responses were not 
observed. Phase III trials are currently in progress (94). 

One aspect of oncolytic viral therapy that is very 
encouraging is that responses have been documented 
at sites distant from the injection sites, a phenomenon 
known as an abscopal effect. As mentioned earlier, 
abscopal responses are sometimes seen in radiotherapy 

for cancer where a specific tumor site is treated and 
distant responses to untreated sites are observed. The 
fact that abscopal responses are being observed with 
oncolytic viral therapy confirms a dual action, namely 
a direct tumor lysing action at the site of injection and 
a systemic anti-cancer immune response capable of 
acting at non-injected sites. 

Adoptive cell therapy

Early studies in murine models demonstrated the pre-
sence of lymphocytes in transplantable murine tumors 
(95–98). Subsequent studies showed that these “tumor 
infiltrating lymphocytes” (TIL) had potent anti-tumor 
activity when expanded ex vivo and reintroduced into 
tumor bearing hosts, a strategy used to treat lung and 
liver metastases (95–99). 

In humans, adoptive cell therapies (Table I) utilizing 
TILs in combination with IL-2 have been promising. 
In one study, 86 patients with metastatic melanoma 
received autologous TILs plus high-dose intravenous 
IL-2. This resulted in an overall objective response 
rate of 31% with a complete response rate of only 
5.8% (100). Lymphodepletion prior to TIL infusion 
has been employed in an effort to improve the in 
vivo microenvironment by reducing competition for 
growth factors and cytokines. Elimination of the native 
lymphocytes also opens up considerable “space” for 
the adoptively transferred cells, which can undergo 
homeostatic expansion to fill the vacated real estate. 
In one study, lymphodepletion with cyclophosphamide 
and fludarabine prior to infusing TILs resulted in an 
overall response rate of 51% (101). However, the 
complete response rate did not exceed 10% (101). In 
a follow-up study, metastatic melanoma patients re-
ceived total body irradiation (2 or 12 gy) in addition 
to lymphodepletion with chemotherapy prior to TIL 
infusion. This resulted in an objective response rate of 
52% and 72% and a complete response rate of 22%, 
the majority of which remained disease free at 3-year 
follow-up (102). Thus, lymphodepletion has a positive 
effect on adoptive cell transfer therapy.

Although TILs have not been studied extensively in 
patients with cutaneous metastatic melanoma, adoptive 
transfer of TILs may be a reasonable option for refractory 
cutaneous lesions. It is an exciting possibility because 
cutaneous metastases are easily accessible to surgical 
sampling and TIL harvesting. However, several limita-
tions still exist with this technique. For one, it is very 
difficult to generate sufficient quantities of tumor-specific 
lymphocytes that can maintain their tumor-killing acti-
vity in vivo. Studies have suggested that less than 50% 
of melanomas will have TILs of sufficient potency (102). 
In addition, not all TILs are tumor reactive and selective 
expansion of tumor-specific clones without the concomi-
tant expansion of bystander T cells remains challenging, 
labor intensive, expensive, and technically difficult. 
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Other methods are being studied in an attempt to 
overcome the barriers associated with TIL therapy. 
For example, T cells can be genetically engineered 
to express melanoma-specific TCRs. In one example, 
a retrovirus was used to transduce peripheral blood 
lymphocytes (PBL) to express a MART-1-specific TCR 
(Fig. S11). Adoptive transfer of these cells induced a 
complete response in 2 out of 13 patients with MART-
1-expressing melanomas (103). 

In summary, current evidence suggests that immun-
otherapy with adoptive transfer of TILs is a promising 
avenue to treat patients with refractory metastatic 
melanomas. However, it is a technically challenging 
process and until melanoma-reactive lymphocytes can 
be efficiently manufactured, transferred, and maintained 
in vivo with their anti-tumor properties intact, it will 
be difficult to implement these therapies into routine 
clinical practice. 

Anti-CTLA4 therapy

CTLA-4 is a transmembrane inhibitory receptor ex-
pressed on activated T lymphocytes (104–106). Upon 
binding to B7.1 or B7.2, CTLA-4 down-regulates T 
cell activation by inducing cell cycle arrest, inhibiting 
IL-2 secretion, and by down regulating T-cell cytokine 
receptors (105, 107–110). Due to its T-cell inhibitory 
effects, CTLA-4 blockade with anti-CTLA-4 monoclo-
nal antibodies (see Table I) allows for unopposed T-cell 
activation, breaking of tolerance to tumor antigens, and 
ultimately tumor lysis (Fig. 2) (109).

Tremelimumab, a human monoclonal IgG2 anti-
CTLA-4 antibody, was the first anti-CTLA-4 agent to 
be investigated in patients with metastatic melanoma 
(104). In phase I/II clinical trials, tremelimumab demon-
strated antitumor activity in select stage III/IV melano-
ma patients(105). Although initial data was promising, 
a phase III study was later halted after tremelimumab 
failed to show any benefit over chemotherapy (111). 

Despite tremelimumab’s demise, ipilimumab, a human 
monoclonal IgG1 anti-CTLA-4 antibody, has been shown 
to benefit patients with metastatic melanoma in multiple 
clinical trials. In a randomized, double-blind, phase III 
study, 676 previously treated patients with unresectable 
stage III and IV melanoma received either ipilimumab 
monotherapy, ipilimumab in combination with gp100 
peptide vaccine, or gp100 peptide vaccine monotherapy. 
They were then followed for up to 55 months (112). Me-
dian survival was significantly higher in the ipilimumab 
monotherapy arm (10.1 months) and in patients receiving 
ipilimumab in combination with gp100 (10.0 months) 
compared to gp100 monotherapy (6.1 months). There 
was no significant difference between ipilimumab mo-
notherapy and ipilimumab in combination with gp100. 

In a separate phase III study, 502 patients with untrea-
ted stage III/IV melanoma were randomized to receive 
either ipilimumab in combination with dacarbazine 
or dacarbazine monotherapy with overall survival as 
the primary outcome measure (113). In this study, the 
ipilimumab and dacarbazine group demonstrated an 
increased overall survival (11.2 months) when compa-
red to dacarbazine monotherapy (9.1 months). Overall 
survival rates at 12 months were 47.3% and 36.3% 
respectively (113). In a phase II trial, 75 patients with 
stage IIIc/IV melanoma status post resection were 
treated with ipilimumab. Significant immune-related 
adverse events (colitis, hypophysitis), defined as grade 
II, III, or IV, were seen in 37% of the patients, but they 
correlated with a longer relapse-free survival (114). 

In a small percentage of patients, ipilimumab has 
induced a complete response; in some patients, up to 
99 months has been reported (115), although the overall 
survival benefit in most patients has been modest. The 1https://doi.org/10.2340/00015555-2035

Fig. 2. Cytotoxic T-lymphocyte antigen (CTLA)-4 blockade supports 
unopposed T cell activation. A) For optimal T-cell activation the naïve 
T cell needs to receive two signals. T-cell receptor (TCR) recognition 
of its cognate presented in the context of an MHC molecule delivers 
the first signal. Not depicted here are the associated molecules CD3 and 
CD4 (or CD8, depending on the type of T cell), which are important for 
signal transduction and antigen recognition, respectively. Signal two is 
then provided by the CD28-B7 interaction. Once the T cell has received 
both signals, it then becomes activated. B) Following T-cell activation, 
CTLA-4-outcompetes CD28 for B7 binding. This competition allows 
T-cell activation to be attenuated as CTLA-4 transduces a negative signal 
to the T cells. C) Treatment with ipilimumab (anti-CTLA-4) blocks the 
negative signal that is usually delivered by CTLA-4. This allows CD28 
to continuously interact with B7 and send a positive signal to the T cells, 
resulting in increased T-cell proliferation and promoting the generation 
of effector T cells.
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ipilimumab clinical trials have, however demonstrated 
that utilizing pharmacologic agents to modulate the 
immune system can be an effective strategy to con-
trol melanoma progression. In BRAFV600E negative 
patients, it may be reasonable to treat non-resectable 
cutaneous melanoma metastases with ipilimumab. A 
phase I clinical trial is currently underway studying the 
use of intralesional ipilimumab combined with IL-2 for 
cutaneous metastases of melanoma (NCT01672450). 

Anti-PD-1

The programmed cell death 1 receptor (PD-1), expres-
sed by T cells, has two primary ligands; PD-L1, found 
on cancer cells and tumor-infiltrative macrophages; and 
PD-L2, found on antigen-presenting cells. When bound 
to PD-L1, PD-1 acts as a negative regulator of T cells. As 
with anti-CTLA-4 therapy, antibodies against both PD-
L1 and PD-1 (Table I) have been developed to inhibit this 
down-regulatory pathway, allowing for unopposed T-cell 
activation (Fig. S21). Ideally this will lead to activation 
of tumor-specific T cells and “bystander” T cells that 
may also contribute to the anti-cancer response. Recent 
phase I trials of nivolumab (anti-PD-1) in combina-
tion with ipilimumab (anti-CTLA4) and BMS936559 
(anti-PD-L1) showed promise in treating patients with 
advanced melanoma (Fig. 3) (116). A phase 3 trial is cur-
rently ongoing comparing nivolumab, ipilimumab and a 
combination of nivolumab/ipilimumab (NCT01844505).

A second anti-PD-1 agent, pembrolizumab (formerly 
known as lambrolizumab) just recently was awarded 
FDA approval following data from an international 
multicenter, open-label, randomized, dose-comparative 
phase 1 study randomizing 173 patients with unresec-
table or metastatic melanoma, refractory to ipilimumab 
to receive pembrolizumab 2 mg/kg or 10 mg/kg intra-
venously once every 3 weeks. Overall response rate 
was achieved in 26% in both treatment arms. Adverse 
drug reactions included fatigue, rash and pruritus and 
no drug-related deaths were reported (117).

In an earlier published study, pembrolizumab was 
tested in 135 advanced melanoma patients, producing 
a response rate of 38%, with higher response rates seen 
in patients receiving a larger dose (10 mg/kg of body 
weight every 2 or 3 weeks compared to 2 mg/kg every 
3 weeks). The median progression-free survival rate 
was greater than 7 months. Safety profile was similar 
to that of the most recent study (118). Combination 
therapies utilizing multiple immune modulating agents 
are showing great promise and will likely be common 
place in future treatment algorithms. 

CONCLUDING REMARKS

The past decade has given rise to a variety of targeted 
therapies that hold great promise for the treatment of 

melanoma. Kinase inhibitors, immune activators, and 
a variety of combinations thereof are slowly increasing 
survival of these patients. Cutaneous metastases of 
melanoma provide a unique opportunity to evaluate 
the efficacy of traditionally systemic therapies as novel 
intralesional treatments. Thus, this patient population 
is ideal to more rapidly test creative strategies, which 
may lead to improved survival. 
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