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Little is known about the functions of microRNAs (miR-
NAs) in skin pigmentation disorders. The aim of this stu-
dy was to investigate the expression and potential role of 
miRNAs in vitiligo. Of 12 studied miRNAs with proven 
functions in cell proliferation, differentiation, immune 
responses and melanogenesis, miR-99b, miR-125b, 
miR-155 and miR-199a-3p were found to be increased 
and miR-145 was found to be decreased in the skin of 
patients with vitiligo. Combined pathway and target 
analysis revealed melanogenesis-associated targets for 
miR-99b, miR-125b, miR-155 and miR-199a-3p. In situ 
hybridization analysis demonstrated increased expres-
sion of miR-155 in the epidermis of patients with viti-
ligo. Correspondingly, miR-155 was induced by vitiligo-
associated cytokines in human primary melanocytes and 
keratinocytes. When overexpressed, miR-155 inhibited 
the expression of melanogenesis-associated genes and al-
tered interferon-regulated genes in melanocytes and ke-
ratinocytes. In conclusion, this study demonstrates that 
the expression of miRNAs is dysregulated in the skin of 
patients with vitiligo and suggests that miR-155 contri-
butes to the pathogenesis of vitiligo. Key words: vitiligo; 
miRNA; skin; melanocytes; keratinocytes.

Accepted Mar 3, 2016; Epub ahead of print Mar 4, 2016

Acta Derm Venereol 2016; 96: 742–747.

Ana Rebane, Institute of Biomedicine and Translational 
Medicine, University of Tartu, Ravila 14B, EE-50411 
Tartu, Estonia. E-mail: ana.rebane@ut.ee

Vitiligo is a common acquired, idiopathic disease, charac-
terized by the destruction of melanocytes (1). Although 
there are rarely any physical symptoms other than depig-
mented macules on the skin, patients with vitiligo, espe-
cially dark-skinned patients, have an impaired quality of 
life (2, 3). Many theories, e.g. autoimmunity, cytotoxic 
metabolites, neural and genetic theories, have been pro-
posed to explain the mechanisms of pigmentation loss. 
In addition to melanocyte dysfunction, keratinocyte 
alteration plays a role; keratinocytes in depigmented 
epidermis are more vulnerable to apoptosis and produce 

lower amounts of melanogenic mediators than normal 
skin (4). However, the exact mechanism underlying this 
pigmentary disorder remains unknown (1) and this has 
held back progress in its treatment (5).

MicroRNAs (miRNAs) are approximately 22 nucleo-
tide-long non-coding gene-regulatory RNA molecules 
that inhibit gene expression through translational 
repression or mRNA turnover. In mammalian cells, in 
most cases, miRNAs bind with partial complementarity 
to sequences in the 3’ untranslated region (3’UTR) of 
target messenger RNAs (mRNAs) for the suppression 
of gene expression. Each miRNA has multiple targets 
and each mRNA is simultaneously regulated by multiple 
miRNAs (6). 

miRNAs have been intensively investigated in 
humans for more than 10 years and have been found 
to regulate most of the cellular processes, including 
cell proliferation, differentiation, development, signal 
transduction, metabolism, apoptosis and immune re-
sponses (7). For instance, miR-155 is known to target 
the suppressor of cytokine signalling (SOCS1) and 
there by activates interferon signalling in CD8+ cyto-
toxic T cells (8). miRNA dysregulation is associated 
with the pathogenesis of various inflammatory diseases, 
including different inflammatory skin disorders, such 
as psoriasis (9), atopic dermatitis (7, 10) and allergic 
contact dermatitis (11). Aberrant expression of several 
miRNAs in the skin and serum of patients with vitiligo 
has been demonstrated by microarray analysis (12, 13). 
Using quantitative reverse transcription-PCR (qRT-
PCR), dysregulation of miR-224-3p, miR-4712-3p 
and miR-3940-5p has been shown in peripheral blood 
mononuclear cells of patients with vitiligo (14). A single 
nucleotide polymorphism, rs11614913 in miR-196-a-2, 
has been found to be associated with vitiligo (15). How-
ever, little is known about the role of miRNAs in the 
pathogenesis of vitiligo.

The aim of this study was to investigate the potential 
role of previously known melanocyte-, keratinocyte-, 
immunity-, cell proliferation-, differentiation- and 
apoptosis-associated miRNAs in vitiligo. We measured 
their expression in the lesional and non-lesional skin of 
patients with vitiligo and in cultured unstimulated and 
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cytokine-treated melanocytes and keratinocytes, and as-
sessed the possible targets of the dysregulated miRNAs. 

MATERIALS AND METHODS

Patients 
A total of 17 patients with non-segmental vitiligo (5 with ac-
tive and 12 with stable vitiligo) and 17 control subjects were 
included in the study. All participants were unrelated Caucasian 
individuals living in Estonia. The study was approved by the 
research ethics committee of the University of Tartu. A detailed 
description of the patients is provided in Appendix SI1.

Cell culture experiments and miRNA and mRNA expression 
analysis
Human melanocytes from paediatric foreskin were cultivated in 
melanocyte growth medium M2 with supplement mix (Promo-
Cell, Heidelberg, Germany). Pooled, normal human epidermal 
keratinocytes (Promocell, Heidelberg, Germany) were cultured 
in keratinocyte-serum-free medium (SFM) with supplements 
(Life Technologies, Grand Island, New York, USA). In situ 
hybridization (ISH) was performed on 10-µm sections of 
frozen skin biopsy specimens using miR-155, miRCURY 
LNA™ Detection Probe for hsa-miR-155 (88072-15) (Exiqon, 
Vedbaek, Denmark) according to the manufacturer’s protocol. 
The transfection protocol, RNA purification, qRT-PCR and ISH 
are detailed in Appendix SI1.

miRNA target selection, pathway analysis and statistics
Putative targets were selected using Targetscan 6.2 (http://www.
targetscan.org/) (16). The pathway analysis was performed with 
g:Profiler (http://biit.cs.ut.ee/gprofiler) (17). For statistical 
analysis, Fisher’s exact test, Student’s t-test and Mann-Whitney 
U test were applied. Details are given in Appendix SI1.

RESULTS

To investigate the potential role of miRNAs in vitiligo, 
we selected 12 miRNAs with known functions in the 
regulation of cell proliferation and differentiation 
(miR-10a, miR-99b, miR-125a, miR-125b and miR-
199a-3p), immune responses (miR-146a, miR-146b, 
miR-155, miR-223 and miR-511), skin homeostasis 
(miR-203) and melanogenesis (miR-145) (7, 9, 18) 
(see also Appendix SI1 and Table SI1). The expression 
of the selected miRNAs was detectable by qRT-PCR 
in the skin from control subjects. The most abundantly 
expressed miRNA was miR-125b, whose expression 
level was approximately 3,800 times higher than that of 
miR-511, the miRNA with the lowest expression level 
(mean threshold cycle 29.5) (Fig. 1A). From this set of 
miRNAs, we found miR-99b, miR-155, miR-199a-3p, 
miR-125b and miR-145 to be dysregulated in skin from 
patients with vitiligo compared with skin from control 
subjects, and miR-146b to be differentially expressed 

in the lesional compared with non-lesional skin from 
patients with vitiligo (Fig. 1B). miR-99b expression 
levels were increased in vitiligo lesional (p < 0.001) 
and non-lesional skin (p < 0.01) compared with the 
control subjects. Highly significant upregulation of 
miR-155 (p < 0.01), miR-199a-3p (p < 0.01), significant 
upregulation of miR-125b (p < 0.05) and downregula-
tion of miR-145 (p < 0.05) expression was detected 
exclusively in vitiligo lesional skin compared with the 
control subjects. In the cases of miR-155 (p < 0.05), 
miR-199a-3p (p < 0.05) and miR-146b (p < 0.05), the 
expression levels were higher in vitiligo lesional skin 
than in vitiligo non-lesional skin. The expression levels 
of dysregulated miRNAs did not differ statistically 
significantly between patients with active and stable 
vitiligo (data not shown). There were no statistically 
significant differences in the expression levels of miR-
10a, miR-125a, miR-146a, miR-203, miR-223 and 
miR-511 between the groups (data not shown). 

To analyse whether the differentially expressed 
miRNAs, miR-99b, miR-125b, miR-145, miR-155 and 
miR-199a-3p, can influence cellular processes associa-
ted with vitiligo, we performed pathway analysis for 
conserved and the best-scored miRNA targets expressed 
in the skin. Four miRNAs, miR-99b, miR-125b, miR-
155 and miR-199a-3p, were found to have predicted 
direct targets belonging to either the gene ontology 
(GO) or human phenotype (HP) ontology groups or to 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways related to melanocyte differentiation, me-
lanogenesis, melanosome structure and localization, 
and skin pigmentation (Table SII1). Putative miR-145 
targets included genes involved in the regulation of 
stress-activated mitogen-activated protein kinase 
(MAPK), c-Jun N-terminal kinase (JNK) and trans-
forming growth factor (TGF)-β signalling pathways. 
All 5 of the differentially expressed miRNAs also had 
putative targets belonging to functional groups that 
might indirectly influence cellular processes in vitiligo, 
including abnormalities in skin physiology, inflamma-
tory abnormalities of the skin, programmed cell death, 
tight junction interactions, cell growth and cell cycle 
progression (data not shown). 

We next focused our experiments on miR-155, as it 
was predicted to target multiple important melanoge-
nesis-associated genes (Table SII1) and has previously 
been shown to contribute to the activation of interferon 
signalling (8). We first performed in situ hybridization 
on skin samples from patients with vitiligo and control 
individuals. The expression of miR-155 was detected 
in stratum basale, where melanocytes and proliferating 
keratinocytes are located, as well as in stratum spinosum 
of the epidermis of patients with vitiligo. In line with 
RT-qPCR results (Fig. 1B), no signal in one donor and 
faint positive signal of miR-155 was detected in the 
epidermis of control skin (Fig. 2A).1http://www.medicaljournals.se/acta/content/?doi=10.2340/00015555-2394
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We next studied whether the cytokines, which are 
known to be associated with the pathogenesis of viti-
ligo, (1, 19, 20) influence the expression of miR-155 
in melanocytes and keratinocytes. We treated human 
melanocytes and keratinocytes with tumour necrosis 
factor alpha (TNF-α), interferon (IFN)-γ, IFN-α and 

interleukin (IL)-1β and measured 
the relative expression of miR-155 
using qRT-PCR. In melanocytes, the 
expression of miR-155 was signifi-
cantly upregulated by TNF-α, IFN-γ, 
IFN-α and IL-1β after 24 h (p < 0.001, 
p < 0.01, p < 0.05 and p < 0.01, respec-
tively) and 48 h (p < 0.001, p < 0.01, 
p < 0.01 and p < 0.001, respectively) 
of stimulation (Fig. 2B). In keratino-
cytes, the expression of miR-155 was 
significantly upregulated by TNF-α 
and IFN-α (p < 0.001 and p < 0.001, 
respectively) after 24 h of stimulation 
and then downregulated (p < 0.01) at 
the 48 h time-point. In response to 
IFN-γ, miR-155 was upregulated at 
both 24 h (p < 0.01) and 48 h (p < 0.05) 
time-points. Significant upregulation 
by IL-1β was only observed after 48 
h of stimulation (p < 0.001) (Fig. 2C). 

To test whether miR-155 may influ-
ence the development of vitiligo by 
targeting of melanogenesis-associated 
genes and modulating the interferon-
regulated genes in melanocytes, we 
performed miR-155 overexpression 
experiments in melanocytes and kera-
tinocytes. We first transfected human 
primary melanocytes with miR-155 
and the control mimic (Fig. 3A), sti-
mulated the cells with IFN-γ or left 

unstimulated, and measured relative expression of se-
lected putative miR-155 targets and interferon-regulated 
genes with RT-qPCR. The melanogenesis-associated 
genes, such as tyrosinase-related protein 1 (TYRP1), 
syndecan binding protein (SDCBP), tyrosine 3-mo-
nooxygenase/tryptophan 5-monooxygenase activation 

Fig. 1. Relative expression of miRNAs in the skin of control subjects and patients with vitiligo. 
(A) The results in control skin are represented as boxes with whiskers showing the minimum and 
maximum and are shown relative to the level of miR-511 (=1). (B) Selected individual miRNA 
levels in control subjects (CS =1) and lesional skin (VLS) and non-lesional skin (VNLS) of 
patients with vitiligo. Mean ± standard error of the mean (SEM) is indicated. *p < 0.05; **p < 0.01; 
and ***p < 0.001.

Fig. 2. Expression of miR-155 in the 
skin, melanocytes and keratinocytes. (A) 
Lesional skin from 2 patients with vitiligo 
and the skin from 2 control subjects was 
used for in situ hybridization with miR-
155-specific probe. Red colour indicates 
nuclear fast red staining, blue colour 
miR-155 expression, bar = 50 μm. (B, 
C) The expression of miR-155 in tumour 
necrosis factor alpha (TNF-α)-, interferon 
(IFN)-γ-, IFN-α- and interleukin (IL)-
1β-treated (B) melanocytes and (C) 
keratinocytes is shown relative to the 
expression levels in unstimulated cells 
at each indicated time-point. Results are 
displayed as the mean ± standard error of 
the mean (SEM). Data are from 3 different 
stimulations. *p < 0.05; **p < 0.01; and 
***p < 0.001.
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protein epsilon (YWHAE), and a gene associated with 
melanocyte differentiation, SRY (sex determining re-
gion Y)-Box 10 (SOX10), were included in the analysis. 
Of IFN-γ-inducible genes, we analysed the effect of 
miR-155 on interferon-induced transmembrane protein 
1 (IFITM1), interferon regulatory factor 1 (IRF1) (21) 
and previously described miR-155 direct target SOCS1. 
Fig. 3B and C demonstrate that the overexpression of 
miR-155 suppressed the expression of SOX10 (p < 0.05), 
TYRP1 (p < 0.01) and YWHAE (p < 0.01) in unstimu-
lated melanocytes. The mRNA level of SDCBP was 
inhibited both in unstimulated and IFN-γ-stimulated 
melanocytes with p < 0.01 and p < 0.05, respectively. Of 
interferon-inducible genes, SOCS1 was suppressed by 
miR-155, both in unstimulated (p < 0.01) and stimulated 
(p < 0.05) melanocytes. IRF1 was decreased (p < 0.001) 
and IFITM1 was increased (p < 0.05) in unstimulated 
melanocytes transfected with miR-155 compared with 
the control transfection. IFITM1 and IRF1 were strongly 
induced in response to IFN-γ, and IFITM1 was further 
increased (p < 0.01) upon overexpression of miR-155. 
For IRF1, no difference between miR-155 and control-
transfected cells was observed when the cells were 
stimulated by IFN-γ (Fig. 3D).

In the similar overexpression experiment in keratino-
cytes, miR-155 suppressed the expression of YWHAE 
(p < 0.05) in unstimulated conditions (Fig. 3E). Among 

interferon-inducible genes, SOCS1 and IRF1 were sup-
pressed by overexpression of miR-155, both in unstimu-
lated (p < 0.05 and p < 0.01, respectively) and stimulated 
(both with p < 0.05) keratinocytes. Similarly to the 
effect in melanocytes, IFITM1 was increased in unsti-
mulated (p < 0.001) and IFN-γ-stimulated (p < 0.001) 
keratinocytes transfected with miR-155 compared with 
the control transfections (Fig. 3F). In conclusion, these 
results demonstrate that miR-155 has the capacity to 
impact melanogenesis and inflammatory responses in 
vitiligo directly through its effect in melanocytes and 
keratinocytes.

DISCUSSION

Little is known about the functions of miRNA in the 
pathogenesis of vitiligo. This study revealed that miR-
99b, miR-155, miR-199a-3p, miR-125b and miR-145 
are dysregulated in the skin of patients with vitiligo, of 
which miR-99b, miR-125b, miR-155 and miR-199a-
3p were found to have putative targets associated with 
melanocyte differentiation and melanogenesis. Among 
the dysregulated miRNAs, we demonstrated increased 
expression of miR-155 in the epidermis of patients 
with vitiligo. Thus, miR-155 was induced by vitiligo-
associated cytokines TNF-α, IFN-α, IFN-γ and IL-1β in 
human primary melanocytes and keratinocytes. When 

Fig. 3. miR-155 inhibits melanogenesis-
associated targets and modulates 
interferon-inducible genes in melano-
cytes and keratinocytes. (A–D) Human 
primary melanocytes and (E, F) 
keratinocytes were transfected either 
with control (cont) or hsa-miR-155-5p 
mimic for 24 h and then stimulated 
with interferon (IFN)-γ for 48 h or left 
unstimulated (us). Relative expression 
compared with unstimulated control-
transfected cells (=1) is shown. Data 
represent mean ± standard error of the 
mean (SEM). *p < 0.05; **p < 0.01; and 
***p < 0.001.
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overexpressed, miR-155 inhibited the expression of 
genes known to affect melanocyte differentiation and 
melanogenesis, such as TYRP1, YWHAE, SDCBP and 
SOX10 in melanocytes, and YWHAE in keratinocytes. 
In addition, miR-155 overexpression altered the le-
vels of interferon-regulated genes SOCS1, IRF1 and 
IFITM1 in melanocytes and keratinocytes. Our results 
suggest that miR-155 and other miRNAs contribute to 
the pathogenesis of vitiligo.

Previously, miRNA expression profiles of peripheral 
blood mononuclear cells (14), serum (13) and skin 
(12) of patients with vitiligo have been studied. We 
report here for the first time the aberrant expression of 
miR-125b, miR-155 and miR-199a-3p and confirm the 
altered expression of miR-99b, in the skin of patients 
with vitiligo. In addition, miR-146b was significantly 
upregulated in vitiligo lesional skin compared with non-
lesional skin. An increased expression level of miR-145 
and miR-10a in the non-lesional skin from patients with 
vitiligo has been reported previously (12). The results of 
our study did not confirm these differences, as miR-145 
was downregulated in vitiligo lesional skin and miR-10a 
showed no differences between the studied groups. This 
might be due to differences in participant characteristics 
or technical approach. For the other studied miRNAs, 
miR-125a, miR-203, miR-223 and miR-511, we did not 
detect any differences in the expression levels in the 
skin of control subjects and patients with vitiligo. Pre-
viously, the expression of miR-10a and miR-125b was 
observed to be downregulated and miR-223 upregulated 
in serum from patients with vitiligo (13). 

Consistent with its overexpression in the epidermis, 
miR-155 was induced in response to TNF-α, IFN-α, 
IFN-γ and IL-1β, the proinflammatory cytokines that 
have been previously reported to be associated with vi-
tiligo pathogenesis (see also Appendix SI1, Table SIII1) 
in cultured melanocytes and keratinocytes. miR-155 
was overexpressed in the skin from patients with atopic 
dermatitis, mainly due to the presence of immune cells 
(22). In our study, in line with stimulation experiments 
in melanocytes and keratinocytes, miR-155 was obser-
ved to be increased in the epidermis of lesional vitiligo 
skin, when analysed by in situ hybridization. This sug-
gests that the presence of inflammatory cytokines in the 
skin of patients with vitiligo modulates inflammatory 
responses and activates the expression of miR-155 in 
melanocytes and keratinocytes.

miR-155 is known as a proinflammatory miRNA, 
which, among other targets, inhibits suppressor of 
cytokine signalling 1 (SOCS1). This results in the 
activation of the Janus kinase-signal transducer and 
activator of transcription (JAK-STAT) pathway and, 
consequently, of types I and II interferon signalling 
(23). Here, we found that miR-155 modulates several 
interferon-inducible genes, such as SOCS1, IFITM1 
and IRF1, as well as melanogenesis-associated genes, 

TYRP1, YWHAE, SDCBP and SOX10, in melanocytes 
and keratinocytes, which suggests that miR-155 con-
tributes to the pathogenesis of vitiligo, both through 
targeting of melanogenesis-associated targets and via 
modulation of interferon signalling (see also Appendix 
SI1, Table SIV1).

In addition to miR-155, other dysregulated miRNAs 
might contribute to the development of vitiligo. For 
example, miR-125b is downregulated after the induc-
tion of pigmentation in melanocytes (18) and miR-
125b mimics have been shown to inhibit expression 
of pigmentation-related genes (24). Similar to miR-
125b, the expression of miR-145 has been shown to 
be reduced in cultured pigment cells after induction of 
pigmentation (18). The pathway analysis in our study 
detected possible direct targets for miR-145 among the 
MAPK, JNK and TGF-β pathways, which can interfere 
with the viability and functionality of melanocytes (25). 
Although no significant overlap was revealed between 
miR-145 targets and genes associated with pigmen-
tation, we detected the presence of binding sites for 
miR-145 in the mRNAs of melanogenesis-associated 
genes ras-related protein rab-27A (RAB27A), SRY (sex 
determining region Y)-Box9 (SOX9) and fascin actin-
bundling protein 1 (FCSN1) using Targetscan (data not 
shown). This is in line with previous results demonstra-
ting the influence of miR-145 on genes involved in the 
pigmentation process in miR-145-transfected cells (18).

In conclusion, this study demonstrates that miRNAs 
miR-99b, miR-125b, miR-145, miR-155 and miR-
199a-3p are dysregulated in the skin of patients with 
vitiligo, and shows that miR-155 has the capacity to 
modulate melanogenesis-associated and interferon-
inducible genes in melanocytes and keratinocytes. 
Further studies are needed to clarify whether miR-155 
and other dysregulated miRNAs described in the present 
study are suitable diagnostic markers and/or targets for 
the treatment of vitiligo. 
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