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SIGNIFICANCE
Psoriasis has benefited greatly among dermatological con-
ditions from genome-wide association studies (GWAS) of 
increasingly large, clinically well-described samples. Six-
ty-five regions of the genome have been linked to psoria-
sis risk in Europeans, with the largest contribution due to 
HLA-C*06:02, a variant of an important gene involved in 
immunity. Other regions implicate numerous immune and 
skin barrier processes in psoriasis development. Recent 
GWAS-based research has shown that genetics can help 
distinguish subgroups of psoriasis patients characterised 
by type (pustular vs. plaque psoriasis), development of 
joint disease or response to various drugs. This may help 
inform future tailored treatment strategies for individuals 
with psoriasis.

Psoriasis is a common inflammatory skin disease cau-
sed by the interplay between multiple genetic and 
environmental risk factors. This review summarises 
recent progress in elucidating the genetic basis of 
psoriasis, particularly through large genome-wide as-
sociation studies. We illustrate the power of genetic 
analyses for disease stratification. Psoriasis can be 
stratified by phenotype (common plaque versus rare 
pustular variants), or by outcome (prognosis, comor-
bidities, response to treatment); recent progress has 
been made in delineating the genetic contribution in 
each of these areas. We also highlight how genetic 
data can directly inform the development of effective 
psoriasis treatments.
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Dermatological research has made extraordinary 
progress over the past 100 years. This has been 

matched – if not exceeded – by advances in the field of 
genetics, particularly in the two decades since the initial 
mapping of the human genome (1, 2). Recent insights into 
the genetic basis of the common skin disease psoriasis 
illuminate the translational potential of genetic studies, 
having directly informed the design of several powerful 
biologic therapies and small molecule inhibitors.

Psoriasis is a chronic immune-mediated inflammatory 
disease that affects around 2% of the world’s population 
(3). It has been designated a serious non-communicable 
disease by the World Health Organisation and its increa-
sing prevalence represents a substantial global public 
health burden (4). Genetic research has delivered critical 
insights into the biology of psoriasis. We now know 
that psoriasis is a multifactorial disease caused by the 
interplay between multiple inherited alleles (Box 1) and 
environmental risk factors. Indeed, it has a particularly 
strong genetic component among complex diseases, with 
heritability estimated to exceed 60% (5).

Unlike other biological features, the genome is fixed 
at birth and does not vary by cell or tissue type, or in 
response to stimuli: in this sense it reveals the causal 

biology of psoriasis. In this review, we describe how 
genetic studies have helped to disentangle pathogenic 
mechanisms of psoriasis and informed the selection of 
therapeutic targets. We also highlight the potential of 
genetic biomarkers as a stratification tool for the effective 
clinical management of psoriasis.

GENETICS OF PLAQUE PSORIASIS

Early genetic findings
It has long been observed that the incidence of psoriasis 
is significantly higher among first- and second-degree 
relatives of sufferers than the general population (6, 
7), and it is more concordant among monozygotic than 
dizygotic twins (8–10).

Linkage studies identified at least 9 genomic regions 
(loci) that co-segregated with psoriasis (PSORS1-9) in 
multiplex pedigrees. However, most of these findings 
could not be replicated, which underscores the limitations 
of linkage approaches for the analysis of multifactorial 
conditions (11). A notable exception is the PSORS1 
region, which maps to the class I interval of the major 
histocompatibility complex (MHC) that primarily en-
codes genes involved in antigen presentation (12–14). 
The region also contains the candidate gene corneodes-
mosin (CDSN), which encodes a desmosomal protein 
involved in keratinocyte cohesion and desquamation 
(15). PSORS1 has the largest effect size and accounts 
for 35–50% of disease heritability explained by known 
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loci. Despite the complex correlation structure across 
the MHC due to extensive linkage disequilibrium (Box 
1) (16), HLA-C*06:02 is now confidently considered 
the most likely causal susceptibility allele, since single 
nucleotide polymorphisms (SNPs; Box 1) that tag this 
allele have generated the most significant association 
signals in subsequent case-control studies (17, 18). Fine 
mapping studies have suggested the presence of additio-
nal association signals within PSORS1, some of which 
are population-specific (19–22).

The only other successfully validated linkage results 
are the PSORS2 and PSORS4 loci on chromosomes 
17q25 and 1q21, respectively. The most likely suscepti-
bility gene in PSORS2 is CARD14, which encodes a 
nuclear factor-κB (NF-κB) activator and harbours vari-
ants associated with rare and common forms of psoriasis 
(23–25). PSORS4 contains the late cornified envelope 
(LCE) genes, which encode stratum corneum proteins 
involved in terminal epidermal differentiation. This locus 
has been implicated in psoriasis susceptibility in genome 
wide association studies of both European and Chinese 
populations (26, 27).

Psoriasis in the GWAS and post-GWAS era
Genome-wide association studies (GWAS) use highly 
optimised microarrays that can efficiently and robustly 
genotype several million genetic markers across the ge-
nome. With sufficiently large sample numbers, GWAS al-
lows even small differences in allele frequencies between 
disease cases and unaffected controls to be detected, 
making it a much more powerful approach than linkage 
analysis. As such, GWAS have fundamentally changed 
the genetic dissection of common complex diseases such 
as psoriasis. By 2010, initial GWAS efforts in psoriasis 

had identified 21 susceptibility loci in Europeans (17, 
18, 28, 29).

One inherent limitation of GWAS, however, is that 
it only uncovers statistical relationships. The genetic 
variants identified by GWAS may actually, by virtue 
of linkage disequilibrium, be tagging a separate ‘cau-
sal’ variant that exerts a biological effect and modifies 
disease risk. To refine GWAS signals and thus identify 
potential causal susceptibility alleles, genotyping ar-
rays with dense coverage in regions of interest have 
been employed. The immunochip included 200,000 
SNPs focused in known susceptibility loci for a range 
of immune-mediated diseases (30). In psoriasis, meta-
analysis of immunochip data almost doubled the number 
of known susceptibility loci and uncovered candidate 
causal variants at 10 loci including in the innate immunity 
genes DDX58 and CARD14 (31). 

More recently the exome chip aimed to comprehen-
sively genotype protein-altering variants, including rare 
variants. Exome chip meta-analysis of 12,000 psoriasis 
cases and 29,000 controls highlighted potential functio-
nal SNPs within 11 known psoriasis susceptibility loci. 
This study provided novel insights into the complex role 
in psoriasis susceptibility of rare variants in the type I 
interferon signalling genes IFIH1 and TYK2 (32).

Rather than physically genotyping additional SNPs 
that are not included in GWAS arrays, however, it is 
becoming standard practice to perform genome-wide 
imputation (Box 1) using freely-available computational 
resources (33, 34). Imputation has been critical in facili-
tating the larger psoriasis meta-analyses, which combine 
data generated by different GWAS platforms (35–37). 
Indeed, an improved imputation strategy revealed a 
novel psoriasis susceptibility locus at DLEU1, linked 
to apoptosis, in previously analysed GWAS data (37).

Finally, combining datasets from international colla-
borations in meta-analyses of genome wide association 
studies has been essential to enhance statistical power 
and uncover novel disease susceptibility loci (18, 28, 29, 
31, 38). A recent meta-analysis of psoriasis GWAS with 
a combined effective sample size of > 39,000 individuals 
identified 16 novel disease-associated regions (36).

PATHOGENIC INSIGHTS FROM GENETIC 
DISCOVERIES

As a result of GWAS, targeted association and meta-
analysis efforts, the number of independent genomic loci 
contributing to susceptibility to common plaque psoriasis 
in populations of European ancestry now stands at 65 (32, 
36, 37). More than 30 loci have been implicated in Han 
Chinese individuals (39). Although these susceptibility 
loci can span many genes, many of the lead SNPs lie 
in proximity to genes involved in specific adaptive and 
innate immune pathways. These include genes involved 

Box 1 – Genetic terminology

Alleles: Alternative variants of a gene (or other segment of DNA).
Single nucleotide polymorphism (SNP): A DNA sequence change affecting 
a single genomic position.
Linkage disequilibrium (LD): Genetic variants are in LD if they are in close 
proximity on the same chromosome and therefore less likely to be separated 
by recombination during meiosis, tending to be inherited together and being 
correlated in the population.
Susceptibility loci: Genomic regions that contain variants showing statistically 
significant association in a disease susceptibility GWAS (usually more than one 
variant due to LD).
Imputation: The statistical ascertainment of an individual’s probable genotype 
at known genetic variants that exist in between markers genotyped on a GWAS 
chip. This requires large panels of reference genomes in which genotypes are 
available for the “missing” variants.
Polygenic risk score (PRS): A composite measure of genetic risk for a disease. 
Once a susceptibility GWAS has been completed, the polygenic risk for any 
genotyped individual (who may not have been included in the original GWAS) 
can be calculated by summing the number of risk alleles they carry at each 
susceptibility locus (usually weighted by the effect size observed at that locus).
Genetic correlation: The degree to which the genetic influences on two different 
traits are similar.
Mendelian randomisation: An approach to assess how far one trait (typically 
representing a modifiable exposure) is causal of another trait (typically a health 
outcome) by estimating the effects of genetic variants associated with the first 
trait on the second.
Next-generation sequencing: High-throughput and highly parallelised DNA 
sequencing, typically of the whole genome or exome (the protein coding portion 
of the genome).
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in antigen presentation (HLA-C, ERAP1), T17 cell activa-
tion (IL23R, IL23A, IL12B, TRAF3IP2), innate antiviral 
immunity/type I interferon signalling (RNF114, IFIH1) 
and skin barrier function (LCE3B/3D) (Fig. 1) (17, 18, 
26, 28, 40–42). The coding variants in genes such as 
IL23R, TYK2 and TNFSF15 uncovered by targeted as-
sociation analyses further underscore the involvement of 
the interleukin (IL)-23/T17 axis in disease pathogenesis 
(31, 32, 38, 39, 43).

Genetic studies have thus provided important mecha-
nistic insights into the aetiology of psoriasis, and support 
a pathogenic interplay between immune activation and 
disruption of skin barrier function (44). There is also evi-
dence of gene-gene interactions (epistasis) contributing 
to disease heritability, since variants in ERAP1 (encoding 
an enzyme that trims peptide antigens for loading onto 
MHC class I molecules) only confer disease susceptibi-
lity in individuals also harbouring the HLA-C risk allele 
(18). Once GWAS association summary statistics are in 
hand, there are several additional in silico approaches that 
can help to pinpoint relevant causal genes and variants 
before costly hypothesis-driven functional experiments 
are undertaken.

Statistical fine-mapping jointly considers correlated 
groups of associated variants to estimate the likely 
causality of each (45). This has been undertaken for 
several psoriasis susceptibility loci, revealing multiple 
independent association signals (46).

Pathway analysis methods look for known biological 
pathways for which gene annotations are enriched across 
multiple susceptibility loci. NF-κB and type I interferon 
signalling pathways have thus been implicated in pso-
riasis pathogenesis (36).

If GWAS summary results are available from other 
studies that have assessed the genetic basis of relevant 

molecular traits, colocalisation with the disease associa-
tion signal can be assessed (47, 48). In particular, expres-
sion quantitative trait loci (eQTLs) are SNPs associated 
with the level of expression of a gene in a specific tissue. 
Colocalisation of a psoriasis susceptibility signal and a 
skin- or immune-based eQTL would thus provide strong 
evidence that the variant directly modifies psoriasis 
risk and suggest a probable mechanism of action. This 
powerful approach has been successfully employed in 
GWAS studies of acne (49) and atopic dermatitis (50) 
but has yet to be employed systematically in a large 
psoriasis dataset, with only suggestive colocalisations 
being reported in cross-disease studies (51, 52).

It is worth remarking that all of these approaches rely 
to a greater or lesser extent on open science: the continu-
ing efforts of research groups around the world that are 
committed to making reference data, summary results, 
annotations, tools and computational resources publicly 
available in the interests of collaborative science.

TRANSLATION OF GENETIC DISCOVERIES INTO 
NOVEL THERAPEUTICS

The genetic insights gained from large-scale association 
analyses have paved the way for transformative novel 
therapeutics in psoriasis. Indeed, it has been shown in 
general that pipeline drugs whose mechanisms are sup-
ported by direct genetic evidence are more likely to reach 
the clinic (53, 54). Based on the mechanistic insights that 
have emerged from genetic studies in psoriasis, the IL-23/
T17 axis has been a particular focus for drug develop-
ment. Biologic agents such as ustekinumab (targeting the 
common p40 subunit of IL-12 and IL-23), secukinumab 
and ixekizumab (targeting IL-17A), and newer mono-
clonal antibodies targeting the p19 subunit specific to 

IL-23 (including guselkumab and tild-
rakizumab), have shown progressively 
increasing efficacy rates in clinical trials 
(55). These agents are now licensed for 
use in the USA and Europe and have 
impressive effectiveness and tolerability 
in real world practice (55, 56).

In addition to informing the targets 
of biologic medications, genetic studies 
have opened new avenues for small mo-
lecule therapeutics. Following genetic 
association data highlighting TYK2 as a 
causal allele (31, 32), an oral, selective 

Fig. 1. Biological pathways implicated in psoriasis 
pathogenesis via genome wide association studies 
(GWAS). Candidate causal genes from selected disease-
associated loci identified by GWAS. Arrows signify the 
crosstalk between the immune pathways shown (e.g. 
interleukin (IL)-17 and type I interferon signalling both 
activate nuclear factor-κB (NF-κB) pathways). Red boxes: 
genes involved in mechanisms currently targeted by 
psoriasis treatments.
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inhibitor was developed, which has shown promising 
efficacy in phase II trials (57).

Missing heritability
Despite the recent progress in psoriasis genetics, less 
than a quarter of heritability is thought to be explained 
by the susceptibility loci identified to date (32). There 
are several reasons for this missing heritability. 

A substantial fraction of heritability may arise from 
rare variants that are not geno typed or well tagged by 
GWAS arrays. A recent analysis of 22,000 whole geno-
mes makes a compelling case for this, since the heritabi-
lity of both height and body mass index could be almost 
fully explained when very rare variants are accounted 
for (suggesting also that pedigree-based estimates of 
heritability are not overestimated) (58). The same may 
be true for psoriasis susceptibility, although sequencing 
efforts will need to surpass those performed to date (59) 
to confirm this.

More generally, the estimated heritability explained at 
a GWAS-identified locus may be underestimated where 
the lead GWAS SNP is a poor tag for the true causal vari-
ant, or where there are multiple true causal variants (60).

Another explanation could be high polygenicity, where 
many common SNPs across the genome may modify 
psoriasis risk, but with effect sizes too small to have been 
identified with current GWAS sample sizes. Although 
increasingly large case-control study populations will 
help to address this (61), sufficient numbers to fully 
elucidate the role in psoriasis pathogenesis of every 
individual common SNP are impractical. One approach 
to overcoming this limitation is to consider genetic varia-
tion aggregated according to known biological function. 
For example, functional network-based analyses have 
been applied to suggest novel mechanisms involved in 
psoriasis (36, 62).

It could also be the case that psoriasis risk attributable 
to individual genetic variants does not accumulate additi-
vely and independently, so that simple GWAS association 
tests mask more complex causal biology. Alternative 
models of genetic architecture have been explored (63), 
including genetic interactions genome-wide (64, 65) (re-
call the HLA-C/ERAP1 interaction described previously).

Missing heritability in genetic studies could be due 
in part to epigenetic variation: DNA modifications that 
can cause differences in gene expression even when no 
differences are present in DNA sequence. Numerous 
studies have begun to explore the role of epigenetics in 
psoriasis, although the types of modification and study 
designs have varied widely, making it difficult to assess 
their overall contribution to heritability (66).

The complex genetic nature of psoriasis and the un-
resolved missing heritability have implications for the 
growing industry of direct-to-consumer genetic testing. 
While genetic risk profiles can offer additional informa-

tion beyond family-history based risk estimates (67), this 
information will likely be insufficiently precise or con-
sistent to offer substantial clinical utility (68, 69) and it 
is vulnerable to misunderstanding by the public (70, 71).

As we shall describe, however, the genetic risk profiles 
of larger cohorts still hold great potential to refine our 
understanding of the biology and to inform effective 
clinical management of psoriasis.

BEYOND DISEASE SUSCEPTIBILITY

The possibilities of GWAS-based analysis have now 
moved beyond the study of simple susceptibility and 
towards disease stratification. With large collections 
of genotyped and deeply phenotyped individuals, the 
genetic basis of many other aspects of psoriasis natural 
history and treatment response can be characterised (Fig. 
2). These collections could comprise psoriasis patients 
(e.g. PSORT (72)) or be derived from the general popula-
tion with phenotype data from linked electronic medical 
records (e.g. UK Biobank (73)).

These “post-susceptibility” genetic studies still cur-
rently utilise much smaller samples than the suscepti-
bility GWAS meta-analyses described above. However, 
they can benefit from numerous methods that incorporate 
or compare genetic information (typically GWAS sum-
mary statistics) from related traits to make novel infe-
rences. Relevant methods include polygenic risk scores 
(PRS) (74) and genetic correlation (75, 76) to assess 
shared genetic associations, Mendelian randomisation 
(77) to assess causality, and methods for deconvoluting 
genome-wide association signals into functionally re-
levant constituents (78) (Box 1). While findings from 
psoriasis susceptibility studies offer a natural starting 
point (and efforts to accurately document and annotate 
these associations are ongoing (79, 80)), the utility of 
these methods are greatly enhanced by the availability 
of GWAS summary results for thousands of other traits, 
including physiological, disease-based and molecular 
traits (81).

We offer here a brief overview of recent progress in 
psoriasis genetics beyond susceptibility.

Onset
It remains unclear how genetic susceptibility variants 
interact with environmental risk factors such as infection, 
ultraviolet exposure, smoking, alcohol, and psychologi-
cal stress to trigger psoriasis onset (82). Initial findings 
suggest that the risk attributable to HLA-C*06:02 may 
be modified by smoking and stress (83). The pathoge-
nic contribution of smoking may also be mediated via 
variants in CYP1A1, a key gene in the aryl hydrocarbon 
receptor signalling pathway (84). The availability of 
large datasets with environmental exposure and GWAS 
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data (such as UK Biobank (73)) now offers the oppor-
tunity to study gene-environment interactions in a more 
systematic manner, and this is an active area of research 
in the field. Age of onset is better studied. It is well 
established that the HLA-C*06:02 susceptibility allele 
is associated with earlier disease onset (85, 86). Tsoi et 
al. used PRS analysis to show that a greater burden of 
psoriasis susceptibility variants is associated with earlier 
disease onset, even when only non-HLA susceptibility 
loci are considered (36).

Comorbidities
Psoriatic arthritis (PsA), with prevalence estimates 
ranging from 6–41% among individuals with psoriasis 
(87), has been the subject of large genetic studies as a 
disease in its own right (88–90). Particularly revealing, 
however, are studies comparing individuals with pso-
riasis and PsA against cutaneous-only psoriasis cases, 
(either directly or with reference to unaffected controls). 
Several studies focusing on the HLA region suggest 
that certain HLA-B alleles, including HLA-B*27, are 
associated with increased PsA risk in the presence of 

psoriasis (21, 91, 92), while HLA-C*06:02 is not (91). 
Genome-wide analysis has identified additional as-
sociations of interest, including independent alleles in 
known psoriasis susceptibility loci (including at IL23R 
and TNFAIP3) (93). The translational potential of these 
approaches was recently explored using a “risk score” 
of 200 genetic markers that proved predictive of PsA 
development (area under the receiver operator curve = 
0.82) (37). While this finding requires replication and 
may benefit from phenotype refinement (there are at least 
five recognised subtypes of PsA (94)), it offers a first step 
towards prognostic genetic risk profiling.

Obesity and related cardiometabolic traits have also 
been studied. While a large GWAS-based investigation 
found the genetic architectures of psoriasis and cardio-
metabolic traits to be largely distinct (95), an epidemio-
logical association with obesity is well established (96, 
97) and twin studies suggest a genetic correlation (98). 
Based on psoriasis and body mass index (BMI) GWAS 
data, Mendelian randomisation reveals a causal relation-
ship: higher BMI increases the risk of psoriasis, whereas 
psoriasis does not have a causal effect on BMI (99, 100). 
Given the relatively large effect that HLA-C*06:02 exerts 

Fig. 2. Psoriasis genetics beyond susceptibility. Various strategies are employed to study the genetic factors that influence the conceptual trajectory 
from risk of psoriasis through disease onset and prognosis to patient outcomes (red arrow). Susceptibility: allele frequencies are compared between 
psoriasis cases and controls to reveal genetic variants contributing to psoriasis risk. Onset: gene × environment studies may integrate genetic data with 
environmental exposures (indicated by globe symbol) to identify relationships between genes and environmental triggers; age-of-onset is also influenced 
by genetic factors and this can be investigated where age-of-onset data (denoted by birthday cake symbol) are available for psoriasis cases. Severity: 
genetic profiles can be compared between psoriasis patients with mild and severe disease; severity may also be studied as a continuous outcome. 
Comorbidities: genetic profiles are compared between psoriasis patients with and without comorbid disease D; more sophisticated methods will also 
consider the genetic basis of disease D in the wider population. Response to treatment: genetic profiles can be compared between psoriasis patients 
responding and not responding to a treatment; response may also be studied as a continuous outcome. Gen. corr.: genetic correlation; MR: Mendelian 
randomisation; PRS: polygenic risk score.
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on psoriasis risk, it may be interesting to examine the 
causal role of BMI separately in patients positive and 
negative for this allele.

In principle, the shared genetic aetiology between pso-
riasis and any other associated condition can be readily 
explored at scale via GWAS data. A recent example 
looked at psoriasis alongside 4 other inflammatory di-
seases (ankylosing spondylitis, Crohn’s disease, primary 
sclerosing cholangitis and ulcerative colitis), finding 
genetic overlap between the conditions that may drive 
co-occurrence, but with the qualification that patients af-
fected by multiple conditions are likely to be genetically 
distinct from those with a single disease (101). Shared 
genetic factors have been found to extend beyond inflam-
matory disease, such as the positive genetic correlation 
observed between psoriasis and schizophrenia (102).

Stratified medicine
Genomic information has an exciting role in potential 
future personalised models of disease prevention and 
treatment (103). Although highly discriminative genetic 
prediction for complex diseases such as psoriasis (which 
are influenced by many genetic factors of modest effect) 
is unlikely (74), there remains ample opportunity to 
“stratify” individuals into broader groups according to 
distinct risk and response profiles, thus leading to more 
effective and economical care.

Effective deployment of expensive biologic therapies 
is an area of promise in psoriasis. Patients positive for the 
HLA-C*06:02 psoriasis susceptibility allele demonstrate 
better response to ustekinumab than HLA-C*06:02-
negative patients, particularly during the initial months of 
treatment (104, 105). Numerous candidate gene studies 
(and one small GWAS (106)), have tested for genetic 
associations with response to TNF antagonists such as 
etanercept, adalimumab and infliximab, often pooling 
observations for multiple drugs. Robust associations 
have until recently been scarce, but we are beginning to 
see better-powered investigations; a recent Danish study 
found significant associations with anti-TNF response 
in several immune genes (107). We recently showed 
via a comparative approach that HLA-C*06:02 status 
could inform choice of treatment between adalimumab 
and ustekinumab, particularly when used in combina-
tion with clinical factors. Specifically, we found that 
HLA-C*06:02-negative patients with psoriatic arthritis 
were significantly more likely to respond to adalimu-
mab than ustekinumab after 6 months (odds ratio, 5.98; 
p = 6.89 × 10-5), with no such difference observed in 
HLA-C*06:02-positive patients (108). This has promi-
sing clinical utility.

PRS may also help to define strata relevant to the 
management of psoriasis. Several studies have explored 
the predictive ability of PRS in psoriasis susceptibility 
(36, 109, 110) but the true translational benefits of this 

approach may lie in identifying and characterising groups 
of patients with very high or very low PRS scores (74). 
More research in this area in psoriasis is therefore war-
ranted.

PUSTULAR PSORIASIS

Pustular psoriasis is a rare subtype characterised clini-
cally by the presence of sterile pustules on variably 
erythematous skin, and histologically by diffuse dermal 
neutrophilic infiltration (111). It can be classified as either 
acute generalised (generalised pustular psoriasis (GPP)) 
or chronic localised disease (palmoplantar pustulosis 
(PPP) and acrodermatitis continua of Hallopeau (ACH)) 
(112). Pustular psoriasis has a distinct genetic architec-
ture to plaque psoriasis, underscored by a lack of associa-
tion with the PSORS1 locus (113). The severity and rarity 
of the clinical phenotype indicate that pustular psoriasis 
could be associated with rare alleles of moderate to large 
effect, which has been supported by the identification 
of three disease genes (IL36RN, AP1S3 and CARD14) 
using next-generation sequencing technologies (Box 1).

Linkage studies of consanguineous pedigrees and 
exome sequencing of unrelated GPP patients identi-
fied autosomal recessive loss of function mutations in 
IL36RN (114, 115). IL36RN encodes the IL-36 receptor 
antagonist (IL-36Ra), which modulates the activity of the 
IL-1 family cytokines IL-36α, -β and -γ. The screening 
of expanded patient resources subsequently identified 
a spectrum of IL36RN mutations that are distributed 
throughout the length of the protein and are associated with 
pustular psoriasis in a variety of populations (116, 117).

Genotype-phenotype analyses indicate that IL36RN 
disease alleles are less common in individuals with PPP 
(frequency 0.03) than GPP (0.19) and ACH (0.16) (116). 
Although recessive IL36RN alleles are typically observed 
in patients presenting with a severe clinical phenotype 
(early-onset GPP characterised by a high risk of systemic 
involvement) (118), deleterious IL36RN variants have 
also been associated with localised pustular disease (119). 
Individuals harbouring a single IL36RN mutation are 
occasionally affected, and they classically present with 
disease at a later age, indicating a dose-dependent effect 
(116, 118). Thus, genotype-phenotype analyses provide 
evidence for variable penetrance of disease alleles and 
a potential role for genetic modifiers and environmental 
factors.

Since IL36RN mutations are only found in a minority 
(~25%) of pustular psoriasis cases (118), exome se-
quencing was undertaken to gain a better understanding 
of the genetic basis of the disease. This uncovered two 
recurring founder mutations in the AP1S3 gene (120). 
While these defects were found to account for 12% of 
pustular psoriasis cases of European descent, no AP1S3 
mutations were found in Asian patients. AP1S3 encodes 
the σ1 subunit of AP-1, an evolutionarily conserved 
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hetero-tetramer that has been implicated in the formation 
of autophagosomes (specialised vesicles that mediate 
autophagy). Autophagy is an intracellular degradation 
pathway for misfolded proteins and damaged organel-
les (121) and has been shown to regulate cutaneous 
immune responses (122, 123). AP1S3 mutations may 
lead to defective autophagy, causing accumulation of 
p62 (an adaptor protein that mediates NF-kB activation) 
and upregulation of IL-36 mediated cutaneous inflam-
mation (124). Therefore, mutations in different disease 
genes converge on the de-regulation of IL-36 signalling 
in pustular psoriasis, highlighting IL-36 blockade as a 
promising therapeutic strategy regardless of the specific 
gene affected.

CARD14 was subsequently confirmed as a third di-
sease gene for GPP (25). CARD14 is highly expressed in 
keratinocytes and encodes a scaffold protein that, upon 
oligomerisation, mediates TRAF-2 dependent activa-
tion of NF-κB signalling. A deleterious gain-of-function 
substitution in CARD14 has been associated with GPP in 
an extended case series and shown to cause spontaneous 
CARD14 oligomerisation in vitro (25). The same variant 
was also found in two patients with PPP (125), which 
provides further evidence for an overlap in the genetic 
basis of generalised and localised forms of pustular 
psoriasis. Indeed, gain-of-function CARD14 mutations 
have been detected in cases of familial plaque psoriasis 
(23, 24), indicating shared aetiological mechanisms in 
plaque and pustular subtypes of disease.

There is a substantial unmet need for effective treat-
ments for pustular psoriasis (111). The conventional 
systemic agents used for the treatment of plaque psoriasis 
are often ineffective in pustular phenotypes and there is 
a paucity of robust clinical trial data, such that current 
guidelines are mostly based on isolated case reports 
(111). However, recent exciting progress in this area 
shows a clear throughline from genetic discovery to 
treatment advances. IL-1 blockers are being investigated 
as potential treatments for pustular psoriasis and a multi-
centre double-blind randomised controlled trial of ana-
kinra in PPP is currently underway (http://apricot-trial.
com/). In GPP, anakinra has been shown to cause initial 
rapid clinical improvements in case reports (126, 127), 
although full disease remission was seldom achieved. 
This incomplete response supports the notion that IL-1 
itself is not the dominant disease driver but participates in  
positive regulatory feedback loops driven by IL-36 (128).

In vivo and ex vivo research has validated IL-36 sig-
nalling as a powerful therapeutic target in psoriasis, and 
indicates that IL-36 blockade would not substantially 
compromise host defences (129). A recent phase I proof 
of concept study of 7 patients demonstrated that blockade 
of the IL-36 receptor (using a single intravenous dose 
of a monoclonal antibody) reduced the severity of GPP 
over a 20-week period (130). The agent was efficacious 
irrespective of the presence of known causal genetic va-

riants and larger scale clinical trials of IL-36 antagonists 
in pustular psoriasis are currently underway. 

FINAL THOUGHTS

Non-European ethnicities
We have shown that genetics will be instrumental in 
moving healthcare provision towards stratified, and 
even personalised, models. However, such progress is 
dependent on robust genetic associations with disease 
susceptibility, clinical outcomes and other related traits. 
The majority of genotyping efforts to date have focused 
on populations of European, and to a lesser extent Han 
Chinese, origin, meaning the translational potential of 
GWAS is largely limited to these groups at present.

A trans-ethnic GWAS meta-analysis of psoriasis 
susceptibility demonstrated heterogeneous genetic asso-
ciations between European and Han Chinese populations 
(20). Other ethnic groups in which smaller GWAS and 
candidate gene studies have been undertaken include 
Indian (131), Japanese (132) and Omani Arab (133) po-
pulations. We are unaware of genetic studies of psoriasis 
in people of African descent. While lower prevalence 
might make psoriasis a smaller population burden among 
predominantly non-white populations (134) the disease 
burden for individual psoriasis patients is high, and large-
scale genetic studies across ethnic groups are warranted.

Such endeavours will benefit from recent community 
efforts to generate the necessary supporting resources, 
including statistical tools for trans-ethnic meta-analysis 
(135), reference panels for genome-wide (136) and HLA 
allele (137) imputation, and GWAS summary results for 
common traits (138).

The future of genetics in psoriasis
As with other complex diseases, we believe that gene-
tics will be at the heart of future success in translational 
psoriasis research. Increasingly large GWAS studies will 
improve power to detect genetic variants with small ef-
fects on psoriasis risk, refining our understanding of the 
genetic basis of the disease. This increased resolution 
should allow more accurate deconvolution of susceptibi-
lity associations into functional mechanisms of disease, 
aided by a growing catalogue of systematically derived 
and publicly available GWAS datasets for intermediate 
molecular traits. There is also an increasing awareness 
in the investigative dermatology community of the im-
portance of precise phenotyping. When combined with 
genetic data, larger and more detailed clinical datasets 
will help reveal genetic differences between patients 
that differ in phenotypic presentation or outcome and 
therefore inform the development and deployment of ef-
fective therapies. Finally, as patients become more likely 
to undergo GWAS profiling or whole-genome sequencing 
as part of standard healthcare provision, there will almost 
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certainly be benefits to be derived from PRS or related 
genome-wide measures. These benefits are unlikely to 
come from very precise diagnostic or prognostic pre-
dictions but rather from prioritising individuals for early 
screening or closer monitoring, thus making optimal use 
of clinical resources and reducing the significant disease 
burden of psoriasis at the population level.
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