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SIGNIFICANCE
This is the first study to utilize hyperspectral images and 
a deep-learning convolutional neural network to acquire 
an automated diagnosis for melanocytic tumours and 
pigment ed basal cell carcinomas. The results of this pilot 
study will serve as a basis for future research. The results 
indicate that, with a larger sample and training dataset, 
the convolutional neural network could accurately classify 
malignant melanocytic tumours from pigmented basal cell 
carcinomas. This finding may be used as the basis for de-
velopment of future techniques in melanoma diagnostics, 
which also requires a hyperspectral camera to be commer-
cially available to clinicians. 

Pigmented basal cell carcinomas can be difficult to 
distinguish from melanocytic tumours. Hyperspec-
tral imaging is a non-invasive imaging technique that 
measures the reflectance spectra of skin in vivo. The 
aim of this prospective pilot study was to use a con-
volutional neural network classifier in hyperspectral 
images for differential diagnosis between pigment-
ed basal cell carcinomas and melanoma. A total of 
26 pigmented lesions (10 pigmented basal cell carci-
nomas, 12 melanomas in situ, 4 invasive melanomas) 
were imaged with hyperspectral imaging and excised 
for histopatho logical diagnosis. For 2-class classifier 
(melano cytic tumours vs pigmented basal cell carci-
nomas) using the majority of the pixels to predict the 
class of the whole lesion, the results showed a sensi-
tivity of 100% (95% confidence interval 81–100%), 
specificity of 90% (95% confidence interval 60–98%) 
and positive predictive value of 94% (95% confidence 
interval 73–99%). These results indicate that a con-
volutional neural network classifier can differentiate 
melanocytic tumours from pigmented basal cell car-
cinomas in hyperspectral images. Further studies are 
warranted in order to confirm these preliminary re-
sults, using larger samples and multiple tumour types, 
including all types of melanocytic lesions.

Key words: deep learning; neural network; basal cell carcino-
ma; malignant melanoma.
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Basal cell carcinoma (BCC) is the most common skin 
cancer and the most frequently occurring form of all 

cancers among whites in the Western countries, with an 
estimated lifetime risk of ≥ 30% (1). The most common 
subtypes, nodular and superficial BCC, may occasionally 
contain melanin, referred to as “pigmented BCC”, which 
constitute ~7% of all BCCs (2). Dermoscopy uses a 
magnifying lens and polarized light, to assess different 
structures and colours of a lesion. In dermoscopy the 
pigment in BCC can be seen as blue-grey ovoid nests 

and globules, brown to blue-grey maple leaf-like struc-
tures, or small blue-grey dots (peppering) (2–4). Heavily 
pigmented BCCs may contain brown to black globules 
or dots, or blue-white veil-like structures, and are thus 
difficult to distinguish from melanocytic lesions (5). The 
pigmentation may cause confusion in diagnosing these 
lesions. Differential diagnoses for pigmented BCCs in-
clude melanoma in situ (MIS), invasive melanoma and 
benign pigmented lesions (2, 6). Usually, the clinical 
features suffice to establish the diagnosis of a pigmented 
BCC, but the diagnosis is not always clear-cut (Fig. 1). In 
uncertain cases diagnostic biopsy or excision is required. 

Various non-invasive imaging modalities have been 
developed to aid in the diagnosis of BCC and to avoid 
unnecessary biopsies. These include reflectance confocal 
microscopy (RCM) and optical coherence tomography 
(OCT), as well as investigational methods still under 
development, such as Raman spectroscopy, high-reso-
lution ultrasonography, and terahertz pulse imaging (4). 
Hyperspectral imaging (HSI) is a novel non-invasive 
imaging technique that measures the reflectance spectra 
of skin in vivo to identify different biological tissues (7, 
8). We have previously shown that HSI can delineate the 
lesion borders of ill-defined BCCs and lentigo maligna 
(LM) more accurately than clinical examination, and 
can detect the invasive component in lentigo maligna 
melanoma (LMM) (9–11).

Convolutional neural networks (CNN) represent a 
form of artificial intelligence in decision-making and 
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are a strongly emerging concept in dermatological 
diagnostics. CNNs can classify pigmented and non-
pigmented skin tumours from clinical and dermoscopic 
images with an accuracy similar to that of dermatologists 
(12–14). In addition to 2-dimensional (2D) images, a 
CNN classifier has been utilized with hyperspectral 
images of ex vivo malignant tumours (15, 16).

The aim of this pilot study was to use a combination of 
3-, 2- and 1-dimensional (3D, 2D and 1D) convolutional 
layers in a neural network classifier from hyperspectral 
images to distinguish between pigmented BCCs and 
malignant melanocytic tumours.

MATERIALS AND METHODS

Participant recruitment

The study protocol complied with the principles of the Declaration 
of Helsinki and was approved by the local ethics committee of 
Tampere University Hospital. All participants gave their written 
informed consent. Voluntary patients were recruited from among 
those referred for suspected skin malignancies to the Department 
of Dermatology at Päijät-Häme Central Hospital, Lahti, Finland, 
between May 2014 and November 2017. Inclusion criteria were 
clinically pigmented tumours, which were histologically confirmed 
as BCC, MIS, or invasive malignant melanoma (MM). 

Hyperspectral image acquisition and histopathological examination

All lesions were clinically examined with a dermatoscope 
(Dermlite DL3, 3Gen, San Juan Capistrano, CA, USA) and pho-
tographed. For subsequent orientation purposes, a small mark was 
drawn on the healthy skin beside the lesion, using a black marker 
pen. Hyperspectral images were taken in vivo with an HSI camera 
prototype (VTT FPI VIS-VNIR Spectral Camera, VTT Technical 
Research Centre of Finland, Espoo, Finland). Spectral separation 
of the imager is based on Fabry-Pérot interferometer (FPI), which 
enables fast scanning in the spectral domain. The imager measures 
diffuse reflectance on wavebands from visible to near infrared light 
(500–850 nm) for every pixel of the image. The full width of half 
maximum (FWHM) of each waveband varies from 10 to 30 nm. 
The imager rapidly captures 76 wavebands within a few seconds 
in a 120 mm2 field of view with a spatial resolution of 640 pixels/
mm2 (pixel = 125 × 125 μm). The imaging depth of hyperspectral 
imaging depends on the wavelength (17). In the wavelength range 
used (450–850 nm) the imaging depth varies in the range 0.5–5.0 
mm. Because the whole wavelength range is used in the analysis 
the mean imaging depth is approximately 2 mm. The concentra-
tion of melanin affects the imaging depth, but, because the whole 

wavelength range is used, its effect on the mean imaging depth is 
minor (17). The outcome is a hyperspectral image: a 3D data cube 
containing a reflectance spectrum for each pixel of the 2D image. 
The HSI technique is described in more detail elsewhere (7, 10).

After imaging, the lesions were surgically excised and sent for 
routine histopathological examination. The tissue specimens were 
fixed in 4% formalin, embedded in paraffin, sectioned using the 
traditional vertical bread-loaf technique, and stained with haema-
toxylin and eosin (H&E).

Data pre-processing and 3-dimensional convolutional neural net-
work

Of the 76 wavebands, 66 were used for the analyses. Thus, HSI 
produced a raw data cube (size 240 × 320 × 66 pixels), which was 
calibrated to the radiance using Saari et al.’s method (18). A white 
reference target was captured for each data cube, and this was 
used to convert imaged radiance to reflectance R=I / I0, where I 
is the imaged region of interest and I0 is the data cube from the 
white reference. To reduce the effect of vignetting and lighting 
irregularities, each imaged spectrum was subtracted by its average 
in the spectral domain (Fig. S11).

A combination of 3D, 2D and 1D CNNs, operating separately 
and simultaneously in both spatial and spectral domains, was used 
to classify the lesions (19). For training the neural network, label-
led data from captured hyperspectral images was used. For each 
image, a clinician (JER) manually annotated areas of histologically 
verified tumour, healthy skin and marker pen (Fig. S21). From the 
annotated areas of each image approximately 1,000 datasets of 
5×5-pixel neighbourhoods were selected for training purposes. 
The training set was sampled randomly from annotated points 
to contain a total of approximately 27,000 data-points from each 
class. For annotated points, data augmentation was used, such 
that each training cube was mirrored and flipped horizontally 
and vertically (20). These operations quadrupled the number of 
inputs in the training phase and resulted in a final training set of 
approximately 655,000 data-points.

Due to the limited number of lesions imaged (n = 26), the hyper-
spectral images were divided into 2 parts in the vertical direction 
in the middle of the annotated lesion, so that one half served as 
a training image and the other half was used independently for 
classification. This ensured, firstly, that the training set did not 
contain data-points from the image currently being classified and, 
secondly, that the training set contained a sufficient variation of 
different lesion types (21–23).

For the implementation of CNN, the current study used Keras 
library, TensorFlow backend and Python 3.6. All calculations were 
performed on IBM PowerAI Platform, which includes 2 Nvidia 

1https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-3755

Fig. 1. Photographs of a patient included in the study with both lentigo maligna melanoma (LMM) and pigmented basal cell carcinoma 
(BCC). (a) Overview showing LMM (left) and BCC (right). (b) Close-up showing LMM (left) and BCC (right). (c) Dermoscopic image of the lesion on 
the left, histologically verified as LMM with Breslow depth 1.5 mm. (d) Dermoscopic image of the lesion on the right, histologically verified as a nodular 
pigmented BCC. The results of hyperspectral analyses are shown in Figs 2 and 3.

https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-3755
https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-3755
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Tesla V100-SXM2 16 GB graphics processing units (GPUs). A 
more detailed description of our implementation of CNN in skin 
cancer detection is available elsewhere (18).

Sample size

Due to the pilot study set-up, it was not possible to calculate the 
accurate sample size needed. The study aimed at a sample size of 
10–15 pigmented BCC and 10–15 melanocytic tumours.

RESULTS

Patient demographics and lesion characteristics
A total of 32 lesions fulfilling the inclusion criteria 
were imaged in Päijät-Häme Central Hospital, Lahti. 
Hyperspectral images of 6 lesions were excluded from 
the study because the HSI settings were not optimal at 
the time of imaging, leading to imaging artefacts (under-
exposure or FPI switch inadvertently off). Hence, a 
total of 26 lesions from 24 patients were included in the 
study. Patient demographics and lesion characteristics 
are shown in Table I.

Fifteen patients were men and 9 women, mean age 
73.1 (range 53–91) years. Thirteen had Fitzpatrick’s 
skin phototype II, 8 phototype III, and, in 3 patients, 
the phototype was not reported. Fourteen patients had a 
previous history of skin cancer, as follows: AK (n = 8), 
Bowen’s disease (n = 4), squamous cell carcinoma (n = 3), 
BCC (n = 9), and MIS or MM (n = 4). Five patients had 

a history of other malignancy (2 prostate cancers, one 
tongue cancer, one lip cancer, and one hepatocellular 
and pancreatic carcinoma). Two of the patients were 
immunosuppressed: one patient was an organ-transplant 
receiver and used sirolimus for antirejection, and one 
patient used azathioprine for Crohn’s disease. 

The imaged lesions were located on the face (n = 8), 
neck (n = 3), torso (n = 10), upper extremity (n = 4) and 
lower extremity (n = 1). The mean ± standard deviation 
(SD) diameter of the lesions was 9.8 ± 2.9 mm (range 
5.3–19 mm) and the mean ± SD area was 71.2 ± 46.9 mm2 
(range 11.0–247 mm2).

Histopathological diagnoses
The histopathological diagnoses of the imaged lesions 
were as follows: 10 BCC (6 nodular, 2 superficial, 2 both 
superficial and nodular), 12 MIS (all lentigo maligna 
subtype), and 4 MM (3 lentigo maligna subtypes and 
1 superficial spreading subtype, Breslow depths in the 
range 0.3–1.4 mm).

Hyperspectral analysis
The hyperspectral analyses and lesion classification with 
CNN were conducted by a trained mathematician (IP). 
Due to limited sample size, all melanocytic tumours (MIS 
and MM) were first combined in single group for lesion 
classification. Each hyperspectral image was classified 

Table I. Patient demographics and baseline characteristics, histopathological diagnoses and the result of CNN classification for the lesions 
included in the study

Lesion 
number

Age, 
years

Sex 
(F/M) Lesion location Size, mm

Histopathological diagnosis 
(=true label)

Predicted label by CNN 
(2 classes)

Predicted label by CNN
(3 classes)

1 56 F Eyelid   2  ×  7 nBCC Pigmented BCC Pigmented BCC
2 82 F Temple 11 × 12 LMM (Breslow 1.5) Melanocytic MM
3 a a Temple 5 × 6 nBCC Pigmented BCC Pigmented BCC
4 68 M Upper back 8 × 8 LM Melanocytic MIS
5 69 M Groin 8 × 10 n/sBCC Melanocyticc Pigmented BCC
6 69 M Shoulder 15 × 21 MM (Breslow 1.4) Melanocytic MM
7 57 F Breastbone   7 × 8 sBCC Pigmented BCC Pigmented BCC
8 73 M Back 10 × 13 sBCC Pigmented BCC Pigmented BCC
9 81 F Neck   6 × 13 n/sBCC Pigmented BCC Pigmented BCC

10 72 F Nose 10 × 10 nBCC Pigmented BCC Pigmented BCC
11 53 F Eyelid 4 × 12 nBCC Pigmented BCC Pigmented BCC
12 86 F Upper back 7 × 12 nBCC Pigmented BCC Pigmented BCC
13 66 M Shoulder 9 × 9 LM Melanocytic MIS
14 75 M Shoulder 5 × 10 nBCC Pigmented BCC Pigmented BCC
15 91 M Upper back 7 × 10 LM Melanocytic MIS
16 84 M Chest 4 × 8 LMM (Breslow 0.3) Melanocytic MM
17 83 M Chest 8 × 12 LMM (Breslow 0.4) Melanocytic MM
18 69 M Forehead 8 × 10 LM Melanocytic MIS
19 80 M Neck 8 × 12 LM Melanocytic MIS
20 62 M Forearm 10 × 17 LM Melanocytic MIS
21 75 M Chest 11 × 13 LM Melanocytic MIS
22 77 F Forearm   9 × 12 LM Melanocytic MIS
23 77 M Cheek 10 × 14 LM Melanocytic MIS
24 71 F Lower back 6 × 8 LM Melanocytic MIS
25 79 M Temple 8 × 8 LM Melanocytic MIS
26 b b Neck 6 × 8 LM Melanocytic MIS

The predicted label for the whole lesion was determined by the predicted class of the majority of pixels in the lesion area. The result of classification is presented for 
the study sample divided into 2 classes (pigmented basal cell carcinoma (BCC) and melanocytic tumours) and 3 classes (pigmented BCC, melanoma in situ (MIS) and 
malignant melanoma (MM)). 
aLesions 2 and 3 belonged to the same patient. bLesions 25 and 26 belonged to the same patient.  cConvolutional neural networks (CNN) classification erroneous.
nBCC: nodular basal cell carcinoma; sBCC: superficial basal cell carcinoma; LMM: lentigo maligna melanoma.



A
ct

aD
V

A
ct

aD
V

A
d
v
a
n

c
e
s 

in
 d

e
rm

a
to

lo
g
y
 a

n
d
 v

e
n

e
re

o
lo

g
y

A
c
ta

 D
e
rm

a
to

-V
e
n

e
re

o
lo

g
ic

a

J. Räsänen et al.4/8

www.medicaljournals.se/acta

Fig. 2. Classification and likeli-
hood maps of a histologically 
confirmed invasive melanoma 
(lentigo maligna subtype, Breslow 
depth 1.5 mm). The lesion was 
correctly classified as malignant 
melanoma (MM) by hyperspectral 
imaging using the majority of the pixels 
method. (A) Red, green and blue (RGB) 
image taken by hyperspectral camera. 
(B) Classification map showing most 
of the pixels representing invasive 
malignant melanoma (MM). Upper 
colour bar depicts the 4 classes in 
image B. (C) Likelihood map for the 
localization of MM. (D) Likelihood 
map for the localization of pigmented 
basal cell carcinoma (BCC). Only some 
scattered artefactual pixels are shown 
outside the lesion area. (E) Likelihood 
map for the localization of marker pen. 
(F) Likelihood map for the localization 
of healthy skin. Lower colour bar 
represents the certainty of the classifier 
in each of the likelihood maps. Red line 
shows the division of the hyperspectral 
image into halves, one of which was 
used for the training of the classifier 
and the other for the classifying task.

Fig. 3. Classification and likeli hood 
maps of a histologically confirmed 
pigmented basal cell carcinoma 
(BCC). The lesion was correctly 
classified as BCC by hyperspectral 
imaging using the majority of pixels 
method. (A) Red, green and blue (RGB) 
image taken by hyperspectral camera. 
(B) Classification map showing most of 
the pixels classified as pigmented BCC. 
Upper colour bar depicts the 4 classes 
in image B. (C) Likelihood map for 
the localization of invasive melanoma 
(malignant melanoma; MM). (D) 
Likelihood map for the localization of 
pigmented basal cell carcinoma (BCC). 
(E) Likelihood map for the localization 
of marker pen. (F) Likelihood map for 
the localization of healthy skin. Lower 
colour bar represents the certainty of 
the classifier in each of the likelihood 
maps. Red line shows the division of 
the hyperspectral image into halves, 
one of which was used for the training 
of the classifier and the other for the 
classifying task.
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pixel-wise by 3D CNN, which produced a classification 
map comprehending 4 classes (“pigmented basal cell 
carcinoma”, “melanocytic tumour”, “healthy skin” and 
“marker pen”) (Figs 2–4). The last layer of the classifier 
also created likelihood maps indicating how certain the 
CNN is about the classification. To obtain the classifi-
cation for each pixel over each image, the maximum 
likelihood (the highest value of each pixel in likelihood 
maps) was used. Two different approaches were used 
for the analyses: (i) a majority of pixels classification; 
and (ii) a pixel-wise classification. The histopathological 
diagnoses of the excision specimens represented the true 
classification (true label) of the lesions. 

In the majority of pixels classification, the classifica-
tion maps were used to acquire an automated diagnosis 
for the imaged lesions, i.e. the whole lesion was pre-
dicted to belong to the same class as the majority of the 
pixels in the lesion area. In addition, the accuracy of 
CNN classification per individual pixel was computed 
in comparison with the manual annotations in the ima-
ges (4 pixel classes, as discussed above). By using the 
pixel-wise classification the number of classified areas 
increased from 26 lesions to 164,144 classified pixels. 

The confusion matrices for both lesion and pixel-wise 
classifications are shown in Fig. 5.

For the majority of pixel classification, sensitivity 
was 100% (16/16) (95% CI 81–100%), specificity 90% 
(9/10) (95% CI 60–98%) and PPV 94% (16/17) (95% 
CI 73–99%) in differentiating melanocytic tumours 
from pigmented BCCs. Only one true pigmented BCC 
was falsely predicted as a melanocytic tumour, and all 
melanocytic tumours were correctly predicted according 
to their true label. In pixel-wise classification the sensiti-
vity for differentiating the class “melanocytic tumours” 
from the class “pigmented BCC” was 99.98% (95% CI 
99.95–99.99%), specificity 93.2% (95% CI 92.6–93.7%) 
and PPV 97.8% (95% CI 97.6–98.0%).

This study also tested the accuracy of the CNN clas-
sifier, by dividing the sample into 3 groups: pigmented 
BCC (n = 10), MIS (n = 12) and MM (n = 4), and then used 
the classification maps to acquire an automated diagnosis 
for every lesion in a manner similar to that described 
above. Classifier accuracy by individual pixels was also 
computed (5 pixel classes). In the lesion classification 
using the majority of pixels, calculated sensitivity was 
100% (4/4) (95% CI 51–100), specificity 100% (22/22) 

Fig. 4. Classification map of a histologically confirmed pigmented basal cell carcinoma (BCC). In this case the classifier falsely showed multiple 
pixels representing melanocytes in the lesional area. This may partly been explained by the fact that, histologically, there are some entrapped melanocytes 
in the area of pigmented BCC. Also, pigment macrophages may have been mistakenly identified as melanocytes. In this specific case the image quality 
was low, which also lead to misclassification of the pixels in the surrounding healthy skin.

Fig. 5. Confusion matrices for the convolutional neural network (CNN) classifier. Left: lesion-based classification matrices for 2- and 3-class 
classification using the majority of the pixels to predict the label of whole lesion. Right: classification matrices per individual pixel compared with manual 
annotation in hyperspectral images (true label). In the case of 2 lesion classes the sample was divided into pigmented basal cell carcinomas (BCC) 
and malignant melanocytic tumours (Mel.). In the case of 3 lesion classes the sample was divided into pigmented BCCs, melanomas in situ (MIS) and 
malignant melanomas (MM). The statistical metrics were calculated for the class “Mel.” in case of 2 lesion classes and 4 pixel classes and for the class 
“MM” in case of 3 lesion classes and 5 pixel classes. Sen: sensitivity, Spe: specificity; PPV: positive predictive value.
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(95% CI 85–100) and PPV 100% (4/4) (95% CI 51–100) 
in distinguishing MM from other lesions (MIS and 
pigmented BCC). In pixel-wise classification between 
tumour classes only, the statistical characteristics for 
class “MM” were as follows: sensitivity 99.6% (95% 
CI 99.5–99.7), specificity 98.6% (95% CI 98.5–98.8) 
and PPV 97.3% (95% CI 97.0–97.6). The confusion 
matrices for 3-class lesion classification and 5-class 
pixel-wise classification are shown in Fig. 4. The result 
of the CNN classification for all lesions in comparison 
with true histopathological diagnoses is shown in Table I. 
The difference in the spectra between different lesion 
types and healthy skin is shown in Fig. S31.

DISCUSSION

To the best of our knowledge, this pilot study is the first 
to utilize in vivo hyperspectral imaging (HSI) and a deep-
learning CNN as a tumour classifier for skin tumours. 
The CNN lesion classifier using 2 different approaches 
(majority of pixels classifier and single pixel classifier) 
reached high sensitivity and specificity in distinguishing 
melanocytic tumours from pigmented BCCs.

HSI is a novel non-invasive optical imaging method 
that can be used to image tissues in vivo and ex vivo tis-
sues rapidly in various medical applications. It produces 
a hyperspectral data cube in which different tissue types 
can be identified and visualized based on their specific 
reflectance spectra (8). Map-like images generated by 
HSI can be used to delineate malignant skin lesions 
preoperatively and to visualize invasive parts in large 
lesions to target biopsy sites (9–11). 

Furthermore, HSI could be useful for dermatologists 
as a pre-surgical diagnostic aid for planning the surgical 
excision margins. HSI could be a helpful diagnostic tool 
even for inexperienced physicians, since it is user-inde-
pendent and gives an automated most likely diagnosis.

No earlier reports on HSI combined with CNN for 
tumour classification were found in the literature. 
Among the available non-invasive diagnostic modalities, 
one reminiscent of the current method is MelaFind®, a 
multispectral imaging (MSI) system that acquires 10 
wavebands in the range 430–950 nm, and uses automated 
algorithms based on linear classifiers for pattern recogni-
tion and differential diagnosis of pigmented lesions (24). 
MelaFind has demonstrated high sensitivity, of 82–98%, 
but only moderate specificity, of 8–52%, in recognizing 
melanomas (25–27). A limitation of MelaFind is that 
it may misclassify non-melanoma skin cancers, such 
as BCCs, because the technology is designed to assess 
overall structural disorganization of lesions, rather than 
atypical cellular features (28). Another non-invasive 
MSI technique is SIAscope (spectrophotometric in-
tracutaneous analysis), which captures 8 narrowband 
spectral images in the range 400–1,000 nm to visualize 
the quantity and microscopic architecture of chromo-

phores (melanin, blood and collagen) in the lesion area 
(29). How ever, SIAscopy does not improve diagnostic 
accuracy over dermoscopy in the diagnosis of pigmented 
BCC (30). Tomatis et al. (31) developed an artificial neu-
ral network (ANN) classifier for 1,391 pigmented lesions 
imaged with MSI, which was able to distinguish mela-
noma from other lesions with a sensitivity of 80% and 
specificity of 76%. In another study, Carrara et al. (32) 
developed an ANN classifier for MSI data to differentiate 
between reassuring lesions and those requiring excision, 
using a dataset of 1,966 excised and 1,940 non-excised 
and clinically non-suspicious lesions, resulting in sen-
sitivity of 88% and specificity of 80%. For comparison, 
in meta-analyses, dermoscopy has achieved sensitivity 
and specificity of 88% and 86%, respectively, for the 
diagnosis of melanoma (33), 82.4% and 83.5% for the 
diagnosis of LM and LMM (34), and 81.9% and 81.8% 
for the diagnosis of superficial BCC (35). However, the 
diagnostic accuracy of dermoscopy is user-dependent 
and depends on the experience of the clinician. Recently, 
deep learning CNN have been utilized to facilitate and 
automate diagnostic classification in clinical and dermo-
scopic images, reaching diagnostic accuracies similar to 
those achieved by expert dermatologists, with the area 
under the curve (AUC) of the receiver operating curve 
(ROC) ranging from 0.74 to 0.96 (12–14).

The results of the current study indicate that HSI might 
be capable of spectral differentiation at the cellular level 
and of recognizing the tumour cell of origin (melanocyte 
vs keratinocyte). The CNN classification maps in pixel-
wise resolution can be thought to represent aggregates 
of cells in the microscopic structure of the skin. The 
hyperspectral image analysis appears, in most cases, 
to recognize the different cell types in pigmented BCC 
and melanocytic tumours regardless of the presence of 
melanin pigment. Both tumour types have increased 
amounts of melanin in the dermis, often histologically 
visualized in macrophages. Thus, the results of the cur-
rent study show that HSI does not only use pigment as a 
chromophore, but also recognizes other characteristics 
beyond the pigment. Further verification of this is requi-
red in studies at the cellular level. There were some cases 
with pixels misclassified as melanoma (Fig. 4) within the 
pigmented BCCs, which could be due to the fact that, 
histologically, there are some entrapped melanocytes in 
the areas of pigmented BCCs (36).

The current study used a combination of 3D, 2D and 
1D CNN for automated pixel-wise tumour classification 
in hyperspectral images of the skin. 3D CNN was used 
because the standard 2D CNN used with clinical and 
dermoscopic photographs may not suffice to utilize spec-
tral data, which is 3-dimensional in nature. This method 
produced classification maps of imaged lesions that pre-
dict the lesion’s diagnosis pixel-wise (Figs 2 and 3). The 
classification map not only offers identification (the most 
likely diagnosis), but also delineation and map-like repre-

https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-3755
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sentation of the lesion. Figs 2 and 3 show that there are a 
few misclassified pixels in the tumour area, but that, by 
far, most pixels are classified correctly, predicting the true 
histopathological diagnosis. In addition, at the periphery 
of the image in the area of healthy skin there are some 
rare misclassified pixels. Furthermore, the black hair has 
been classified as “marker pen”, since no separate class 
was created for hair. The few misclassified pixels could 
be explained by imaging errors, such as local increased 
noise or other perturbation in the hyperspectral image, 
or by inaccuracy in the CNN model. When classifying 
whole lesions using the majority of pixels method, the 
few misclassified pixels were averaged, leading to very 
high sensitivity and specificity for differential diagnosis 
of melanocytic tumours from BCCs. In the case of 3 
tumour classes, the accuracy of the CNN classifier was 
also very high with all tumours classified correctly. The 
confusion matrices of individual pixel classification (Fig. 
4) demonstrate the robustness of the CNN’s pixel-wise 
classification, but it should be noted that the pixel-wise 
accuracy is presented only in comparison with manually 
annotated pixel classes in images. The pixel-wise classi-
fication is fairly accurate in distinguishing tumour classes 
from each other, with high sensitivity and specificity for 
both 2-class and 3-class lesion classification. However, 
if all (4 or 5) pixel classes are observed, it can be seen 
that there is a portion of “healthy” annotated pixels that 
are assigned to tumour classes “pigmented BCC”, “me-
lanocytic tumours”, “MIS” and “MM”, which are false 
positives in the whole imaged region and represent the 
inherent error in CNN classification. In this study setting, 
the majority of pixels method can be assumed to predict 
the diagnosis reliably, because we know a priori that no 
single BCC cells are situated inside a melanocytic tumour 
and vice versa. This is not necessarily the case when, for 
example, multiple melanocytic tumours are included in 
the classification task. In the development of the CNN 
classification method, this study strove for pixel-wise 
classification, because there are clinical situations in 
which a single skin lesion may include multiple tumour 
types (e.g. an invasive part of surrounding carcinoma in 
situ, or invasive melanoma arising in melanoma in situ 
or in pre-existing naevus). The CNN method used in the 
present study is novel and can be developed further. In 
addition, the classification of CNN improves with larger 
training datasets, which will require the collection of 
larger samples of different tumour types and from dif-
ferent locations on the body. With a larger training set 
the pixel-wise classification of CNN could be further 
improved to be more robust, thereby reducing the number 
of misclassified pixels.

Study limitations
This study has some limitations. Due to the pilot nature 
of the study, the sample size was small and halves of the 

images were used for the CNN training phase. Ideally, the 
CNN training should be conducted with a dataset separate 
from that used for the classification task. However, the 
small sample size was compensated by the pixel-wise 
analysis, in which the pixels were analysed separately 
and could be counted as separate lesions. This increases 
the reliability of the findings. It should be noted that 
benign tumours clinically mimicking pigmented BCCs 
(benign lentigines, seborrhoeic keratosis, benign naevi) 
were not included, and further studies on this topic are 
warranted. The CNN classification method used is novel 
and requires further development work. An HSI camera 
prototype was used in this study, which could be develo-
ped further to be more robust in order to avoid imaging 
noise and artefacts. There is currently no commercially 
available HSI device for skin imaging. 

Conclusion
This is the first study to utilize hyperspectral images and 
deep-learning CNN to achieve automated diagnosis for 
melanocytic tumours and pigmented BCCs. The results 
will therefore serve as a basis for future studies.

The results of this study suggest that, with a larger 
sample and training dataset, the CNN could accurately 
and pixel-wise distinguish between malignant melano-
cytic tumours and pigmented BCCs. To confirm these 
preliminary results, future studies with larger samples 
and multiple tumour types, including all types of mela-
nocytic lesions, are warranted.
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