Topical Calcitriol (1,25-Dihydroxyvitamin D₃) Treatment of Psoriasis: An Immunohistological Evaluation

J. REICHRATH¹,², A. PEREZ¹, S. M. MÜLLER³, T. C. CHEN¹, A. KERBER², F. A. BAHMER² and M. F. HOLICK¹

¹Vitamin D, Skin, and Bone Research Laboratory, Endocrinology Department of Medicine, Boston University Medical Center, Boston, MA, USA and ²Department of Dermatology, University of the Saarland, Homburg, Germany

The potent calcitriotropic hormone calcitriol (1,25-dihydroxyvitamin D₃, 1,25(OH)₂D₃) has been shown to be very effective and safe in the topical treatment of psoriasis. In vitro, 1,25(OH)₂D₃ inhibits proliferation and stimulates differentiation of human keratinocytes. Increasing evidence suggests an immuno-regulatory function of this potent steroid hormone.

To further characterize the biological effects of topical calcitriol treatment in psoriasis, we have analyzed immunohistochemically the expression of markers for epidermal proliferation (proliferating cell nuclear antigen – PCNA) and differentiation (transglutaminase K, involucrin, cytokeratin 16), as well as inflammation (CD1a, 55 kDa TNF-receptor, NAP-1/IL-8) in calcitriol-treated psoriatic skin in situ. Our findings strongly support the hypothesis that calcitriol modulates keratinocyte proliferation/differentiation as well as inflammation in human skin in vivo. The immunoreactivity of markers for epidermal proliferation and differentiation, as well as of CD1a and NAP-1/IL-8, changed after 8 weeks of calcitriol treatment almost completely to the pattern characteristic for non-lesional psoriatic skin, while a large number of 55 kDa TNF-receptor positive cells could be found in the dermal compartment. 

Key words: calcitriol treatment; immunohistochemistry.

(Accepted November 1, 1996.)


M. F. Holick, Ph.D., M.D., Boston University Medical Center, 80 East Concord Street, Room M-1013, Boston, MA 02118, USA.

Vitamin D is produced by UVB action in the skin, which is also a target organ for the physiologically most active vitamin D metabolite 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃), calcitriol (1). Recently, calcitriol and analogues have been shown to be very effective and safe in the topical treatment of psoriasis (2–4), although the exact mechanisms of action that are responsible for this efficacy are unknown.

1,25(OH)₂D₃ exerts at least part of its pleiotropic biological effects via binding to a nuclear vitamin D receptor (VDR), which is expressed in many cell types, including keratinocytes (5–7). In keratinocytes and other cell types, calcitriol increases rapidly and significantly free cytosolic calcium levels (8, 9). 1,25(OH)₂D₃ also blocks the proliferation and promotes the differentiation of human epidermal keratinocytes in vitro (10, 11). Furthermore, this potent hormone acts on the immune system (12, 13). Many cell types involved in immunologic reactions, such as Langerhans’ cells, monocytes/macrophages, and activated T- and B-lymphocytes, have been shown to contain VDR (6).

To further characterize the effects of topical calcitriol treatment in psoriasis, we analyzed immunohistochemically the expression of markers for proliferation, differentiation and inflammation in lesional psoriatic skin after treatment with calcitriol ointment (15 μg/g vaseline) as compared to vehicle treatment (vaseline) in situ.

MATERIALS AND METHODS

Skin biopsies

After informed consent, punch biopsies (4 mm) were taken under local anaesthesia from the arms or trunk of 5 psoriatic patients (3 males, 2 females, mean age 37.7 years). These patients had not received topical or systemic treatment for at least 3 weeks. Before and during treatment, routine laboratory investigations, including parameters of calcium and phosphorus metabolism, were assessed. Two biopsies, one from a lesional area that had been treated with vehicle alone (vaseline) and the other from a corresponding lesional area that had been treated topically for 8 weeks with calcitriol (15 μg/g in vaseline, single application daily at night), were taken from each patient. Normal human skin was obtained from the arms or trunk of 6 volunteers (4 males, 2 females, mean age 38.4 years, no history of skin disease) with informed consent. Biopsies were immediately snap frozen in liquid nitrogen, embedded in Tissue Tek OCT compound (Miles scientific, Naperville, IL, U.S.A.) and stored at −70°C.

Primary antibodies

To analyze epidermal proliferation, we used a monoclonal antibody against proliferating cell nuclear antigen (PCNA, clone PC 10, Dakopatts, Copenhagen, Denmark). PCNA is synthesized during the S-phase and not expressed during the G0 phase of the cell cycle. Association of PCNA expression with cell proliferation was demonstrated previously using immunohistochemical techniques (14). Epidermal differentiation was assessed by MoAbs against transglutaminase K (Puelset + Lorei, Frankfurt, Germany), involucrin (Puelset + Lorei, Frankfurt, Germany), and cytokeratin 16 (clone KS 8.12, Sigma, München, Germany). Clone KS 8.12 recognizes keratins 13, 15 and 16, but only cytokeratin 16 is present in suprabasal cell layers of hyperproliferative epidermis (15, 16). Cytokeratin 16 is present in non-keratinizing squamous epithelia but is absent in normal epidermis (15–17). Expression of involucrin and transglutaminase K reflects the suprabasal differentiation; both markers are present in normal human skin in the upper spinous layer and the granular layer (15, 17). Epidermal and dermal inflammation was analyzed by monoclonal antibodies against CD1a (Langerhans’ cells, dendritic cells), neutrophil-activating peptide-1-interleukin-8 (NAP-1/IL-8) and 55 kDa TNF-receptor. MoAb 52E8 against NAP-1/IL-8 was a gift from Dr. M. Sticherling (Universitäts-Hautklinik Kiel, Germany); MoAb btr-9 against the 55 kDa TNF-receptor was a gift from Dr. Brockhaus (Hoffmann La Roche, Basel, Switzerland). Expression of NAP-1/IL-8, 55 kDa TNF-receptor, and CD1a in normal and psoriatic human skin was analyzed as previously described (6, 20, 21).

Immunohistochemical staining procedure

Cryostat sections (7 μm) were fixed in 4% paraformaldehyde or acetone, and after intermediate washing steps (PBS, 10 min, RT) they were incubated with the respective primary antibodies, primary antibody-specific biotin-labelled IgG and streptavidin-peroxidase complexes. After a final washing, the sections were treated with
33-diaminobenzidine dehydrated and mounted with Entellan (Merck 7961, Darmstadt, Germany).

Quantification procedures
Microscopic analysis of markers for inflammation, proliferation and differentiation was assessed by two independent observers (JR, SM), blinded to the status of the specimens. The density scores of cells immunostained with MoAbs directed against CD1a, 55 Kd TNF-rp, and PCNA were semiquantitatively enumerated by expressing the number of positively stained epidermal cells per microscopic field on a 0–6 point scale: 0 = no cells/microscopic field labelled with corresponding antibody, 1 = occasional cells/microscopic field labelled, 2 = few cells/microscopic field labelled, 3 = moderate number of cells/microscopic field labelled, 4 = large number of cells/microscopic field labelled, 5 = very large number of cells/microscopic field labelled. Involucrin, transglutaminase K, NAP-1/IL-8, and cytokeratin 16 expression was rated semiquantitatively on a 5-point scale as follows: 0 = no staining, 1 = 1–25%, 2 = 26–50%, 3 = 51–75% and 4 = 76–100% staining of epidermal area, respectively.

RESULTS

Clinical evaluation
Psoriatic lesions that were treated topically with calcitriol ointment (15 μg/g) showed a clinically dramatic improvement in all patients, as compared to corresponding lesional skin areas that were treated with the vehicle alone or to lesional skin before treatment. Whereas the lesion treated with vaseline showed only a modest decrease in scaling (~7%), erythema (~4%) and plaque thickness (~3%), the lesion treated daily with calcitriol ointment showed marked improvement in scaling (90 to 100%), erythema (55 to 100%) and plaque thickness (75 to 100%), as previously described (3).

Histological evaluation
Biopsies taken from vehicle-treated psoriatic plaques revealed typical histological features of lesional psoriatic skin: focal parakeratosis, psoriasiform epidermal hyperplasia, hypergranulosis, dermal papillary oedema, teleangiectasia and an intra-dermal neutrophilic infiltrate. In the upper dermal compartment (papillary dermis) and the lower dermal compartment (papillary superficial plexus and reticular dermis), very strong accumulations of lymphocytic infiltrations could be observed. In contrast, skin biopsies of psoriatic lesions treated with topical calcitriol, showed orthokeratosis, a marked reduction in epidermal thickness, a prominent granular layer with only sporadic polymorphonuclear granulocytes, and minimal perivascular lymphocytic infiltration in the upper and lower dermal compartments.

Immunohistological evaluation
Our immunohistological results demonstrate that calcitriol strongly affects proliferation and differentiation of epidermal keratinocytes in lesional psoriatic skin in vivo. Transglutaminase K. In vehicle-treated psoriatic skin, immunoreactivity for transglutaminase K was observed consistently in the horny layer, the granular layer and the upper spinous layer. After 8 weeks of calcitriol treatment immunoreactivity of MoAb against transglutaminase K was markedly decreased. Epidermal immunoreactivity was found as a small band below the stratum corneum and was comparable with the staining pattern of transglutaminase K in normal human skin (Fig. 1; data of semiquantitative evaluation are shown in Fig. 2).

Cytokeratin 16. Immunoreactivity for MoAb against cytokeratin 16 was consistently detected in all cell layers of the viable epidermis in vehicle-treated psoriatic skin. In contrast, cytokeratin 16 immunoreactivity in calcitriol-treated psoriatic skin was exclusively found in cells of the epidermal basal layer. This staining pattern was comparable to cytokeratin 16 immunoreactivity in normal human skin (data of semiquantitative analysis are shown in Fig. 2).

Involucrin. Involucrin immunoreactivity was detected in vehicle-treated psoriatic skin in all suprabasal epidermal cell layers, predominantly in upper layers. In contrast, labelling of MoAb against involucrin was found in calcitriol-treated psoriatic skin and normal human skin consistently in a small band immediately below the stratum corneum (data of semiquantitative analysis are shown in Fig. 2).

NAP-1/IL-8. Cytoplasmic immunoreactivity for NAP-1/IL-8 was detected in suprabasal epidermal cell layers of vehicle-treated psoriatic skin. Staining was pronounced in upper layers, and focally or very weak NAP-1/IL-8 immunoreactivity was found in suprapapillary epidermal compartments (Fig. 1). In contrast, epidermal cells in suprabasal cell layers of calcitriol-treated lesional psoriatic or normal human skin revealed consistently and homogeneously strong cytoplasmic NAP-1/IL-8 immunoreactivity. (Fig. 1; data of semiquantitative analysis are shown in Fig. 2).

PCNA. In vehicle-treated psoriatic skin, a large number of PCNA-positive nuclei (Fig. 1) was shown in all viable epidermal cell layers, predominantly in lower epidermal layers. After topical calcitriol treatment, a marked decrease in PCNA-positive epidermal cells was shown. This staining pattern corresponds almost completely to the pattern characteristic for normal human skin. (Fig. 1; data of semiquantitative evaluation are shown in Fig. 3).

CD1a. After topical treatment with vehicle alone, the number of CD1a-positive cells in the epidermis was reduced as compared to calcitriol-treated lesional psoriatic or normal human skin (data of semiquantitative evaluation are shown in Fig. 3). 55 Kd TNF-rp. In vehicle-treated psoriatic skin, a large number of 55 Kd TNF-rp-positive cells was found both in epidermal and dermal compartments. After 8 weeks of topical calcitriol treatment, a marked reduction in the number of 55 Kd TNF-rp-positive cells in the epidermal compartment was shown, while a large number of 55 Kd TNF-rp-positive cells remained in the upper and lower dermal compartments (data of semiquantitative analysis are shown in Fig. 3).

DISCUSSION
This study demonstrates strong evidence that topical calcitriol treatment modulates proliferation and differentiation of epidermal keratinocytes as well as inflammation in lesional psoriatic skin in vivo. Gerritsen et al. (22) have recently analyzed immunohistochemically the effects of treatment with 3 μg/g calcitriol in white petrolatum after 1, 4, and 8 weeks of treatment in lesional psoriatic skin. Using additional markers, we have now analyzed the effects of topical treatment with 15 μg/g calcitriol after 8 weeks of treatment in lesional psoriatic skin. Gerritsen et al. (22), using Ki-67, filaggrin, and involucrin as markers, suggested that the normalization of epidermal keratinization in psoriatic skin treated with calcitriol (3 μg/g)
Fig. 1. Immunohistochemical demonstration of the expression of markers for differentiation, proliferation, and inflammation in corresponding lesional psoriatic skin areas after 8 weeks of topical treatment with calcitriol (15 μg/g in vaseline) or the vehicle alone. MoAbs against transglutaminase K (A), PCNA (B), and NAP-1/IL-8 (C) are shown (1 = normal human skin, 2 = calcitriol-treated, 3 = vehicle-treated). Original magnification ×200.

Acta Derm Venereol (Stockh) 77
in lesional psoriatic skin. Other groups recently demonstrated modulation of proliferation, differentiation, and inflammation in lesional psoriatic skin during topical treatment with the vitamin D analogue calcipotriol (MC903) (27–29).

Under our experimental conditions, the effects on inflammation seemed to be stronger in the epidermal as compared to the dermal compartment. After 8 weeks of topical calcitriol treatment, the immunoreactivity for NAP-1/IL-8 changed in the epidermis almost completely, to the pattern characteristic for non-lesional psoriatic or normal human skin. A marked reduction in the number of 55 kDa TNF-rpt-positive cells and a marked increase in the number of CD1a-positive cells were found in the epidermal compartment of calcitriol-treated lesional psoriatic skin. Langerhans’ cells were recently shown to be immunoreactive for VDR (6). It would be interesting to know whether the function and differentiation of Langerhans’ cells are modulated by calcitriol, as recently shown for monocytes and macrophages (13).

The staining pattern of MoAb against 55 kDa TNF-receptor in the dermal compartment did not change to the pattern characteristic for non-lesional psoriatic or normal human skin. One reason for the less pronounced effects of topical calcitriol treatment on the number of 55 kDa TNF-rpt-positive cells in the dermal, as compared to the epidermal compartment, may be that the bioavailability of this potent hormone in the dermal compartment is markedly reduced as compared to the epidermal compartment.

In conclusion, our results strongly support the hypothesis that topical calcitriol treatment affects epidermal proliferation and differentiation in vivo. We analyzed the expression of PCNA, transglutaminase K, involucrin, and cytokerin 16 as markers, confirms the dramatic effects of topical calcitriol treatment on proliferation and differentiation in lesional psoriatic skin in vivo. However, it is not known whether there are additional effects of calcitriol which might have directly or indirectly affected these changes. Increasing evidence suggests an immunomodulating function of calcitriol (12, 13), and recent work has emphasized the importance of immunologic mechanisms involving release of cytokines by activated T cells, macrophages and keratinocytes in the pathogenesis of psoriasis (23, 24). We analyzed the expression of NAP-1/IL-8 and 55 kDa TNF-receptors, for these cytokines and corresponding receptors are suggested to be involved in the pathogenesis of psoriasis (21, 23, 24). IL-1 induced IL-8 expression was recently shown to be regulated by calcitriol in human epidermal keratinocytes at the mRNA and protein level in vitro (25). In the myeloid cell line U 937, calcitriol has been shown to increase TNFα gene expression (26).

Our results indicate that topical calcitriol treatment might enhance immunosuppressive and anti-inflammatory pathways

ACKNOWLEDGEMENT

This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (RE 1–1) and by NIH grants # M01 RR 00533 and AR 36863.

REFERENCES


4. Krägshale K, Beck HI, Sogaard H. Improvement of psoriasis by