ADVERTISEMENT
Advertise
We are currently experiencing problems with the website. Thank you for your understanding.

Content

List volumes - List articles in this issue

Review

Expression of Hypothalamic–Pituitary–Adrenal Axis in Common Skin Diseases: Evidence of its Association with Stress-related Disease Activity

doi: 10.2340/00015555-1557

Abstract:

Hypothalamic–pituitary–adrenal (HPA) axis hormones and their receptors expressed in the skin are known to function locally, but how these hormones affect the maintenance of skin homeostasis or the pathogenesis of skin diseases is not fully understood. We comprehensively reviewed the distribution and function of the central and peripheral HPA axis in various stress-related skin diseases. Previous studies have shown altered expression of central and peripheral HPA axis hormones in chronic inflammatory skin diseases and skin tumours, and that hyper-active lesional HPA axis hormones may negatively feedback to the central HPA axis and interact with some cytokines and neuropeptides, leading to symptom deterio-ration. This provides an evidence-based understanding of the expression of the central and peripheral HPA axis in common skin diseases and its association with disease activity.

Authors:

Jung Eun Kim, Baik Kee Cho, Dae Ho Cho, Hyun Jeong Park
Department of Dermatology, College of Medicine, The Catholic University of Korea 620-56, Jeonnong-dong, Dongdaemun-ku, Seoul, Korea

References

1. Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci 1998; 851: 311–335.

2. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 2000; 80: 979–1020.

3. Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors FASEB J 2001; 15: 1678–1693.

4. Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53: 865–871.

5. Tausk F, Elenkov I, Moynihan J. Psychoneuroimmunology. Dermatol Ther 2008; 21: 22–31.

6. Aguilera G. HPA axis responsiveness to stress: implications for healthy aging. Exp Gerontol 2011; 46: 90–95.

7. Warne JP. Shaping the stress response: interplay of palat­able food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol 2009; 5: 137–146.

8. Hänsel A, Hong S, Cámara RJ, von Känel R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci Biobehav Rev 2010; 35: 115–121.

9. Elenkov IJ, Chrousos GP. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 1999; 10: 359–368.

10. Slominski A, Pisarchik A, Tobin DJ, Mazurkiewicz JE, Wortsman J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology 2004; 145: 941–950.

11. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J 2001; 15: 2297–2299.

12. Pisarchik A, Slominski A. Molecular and functional characterization of novel CRFR1 isoforms from the skin. Eur J Biochem 2004; 271: 2821–2830.

13. Cemil BC, Canpolat F, Yilmazer D, Eskioglu F, Alper M. The association of PASI scores with CRH-R1 expression in patients with psoriasis. Arch Dermatol Res 2012; 304: 127–132.

14. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev 2000; 21: 457–487.

15. Slominski A, Wortsman J, Paus R, Elias PM, Tobin DJ, Feingold KR. Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech 2008; 5: 137–144.

16. Bigliardi PL, Sumanovski LT, Büchner S, Rufli T, Bigliardi-Qi M. Different expression of mu-opiate receptor in chronic and acute wounds and the effect of beta-endorphin on transforming growth factor beta type II receptor and cytokeratin 16 expression. J Invest Dermatol 2003; 120: 145–152.

17. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol 2006; 206: 780–791.

18. Zbytek B, Pikula M, Slominski RM, A. Mysliwski, E. Wei, J. Wortsman, et al. Corticotropin-releasing hormone triggers differentiation in HaCaT keratinocytes. Br J Dermatol 2005; 152: 474–480.

19. Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol 2005; 203: 118–126.

20. Theoharides TC, Singh LK, Boucher W, Pang X, Letourneau R, Webster E, et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998; 139: 403–413.

21. Zbytek B, Mysliwski A, Slominski A, Wortsman J, Wei ET, Mysliwska J. Corticotropin-releasing hormone affects cytokine production in human HaCaT keratinocytes. Life Sci 2002; 70: 1013–1021.

22. Zhou CL, Yu XJ, Chen LM, Jiang H, Li CY. Corticotropin-releasing hormone attenuates vascular endothelial growth factor release from human HaCaT keratinocytes. Regul Pept 2010; 160: 115–120.

23. Wei ET, Gao GC. Corticotropin-releasing factor: an inhibitor of vascular leakage in rat skeletal muscle and brain cortex after injury. Regul Pept 1991; 33: 93–104.

24. Zbytek B, Pfeffer LM, Slominski AT. CRH inhibits NF-kappa B signaling in human melanocytes. Peptides 2006; 27: 3276–3283.

25. Dhabhar FS. Enhancing versus suppressive effects of stress hormones on skin immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 2009; 16: 300–317.

26. Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 1997; 11: 286–306.

27. Park HJ, Kim HJ, Lee JY, Cho BK, Gallo RL, Cho DH. Adrenocorticotropin hormone stimulates interleukin-18 expression in human HaCaT keratinocytes. J Invest Dermatol 2007; 127: 1210–1216.

28. Park HJ, Kim HJ, Lee JH, Lee JY, Cho BK, Kang JS, et al. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway. J Invest Dermatol 2005; 124: 751–755.

29. Buske-Kirschbaum A, Jobst S, Wustmans A, Kirschbaum C, Rauh W, Hellhammer D. Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosom Med 1997; 59: 419–426.

30. Wamboldt MZ, Laudenslager M, Wamboldt FS, Kelsay K, Hewitt J. Adolescents with atopic disorders have an attenuated cortisol response to laboratory stress. J Allergy Clin Immunol 2003; 111: 509–514.

31. Buske-Kirschbaum A, Geiben A, Höllig H, Morschhäuser E, Hellhammer D. Altered responsiveness of the hypothalamus-pituitary-adrenal axis and the sympathetic adrenomedullary system to stress in patients with atopic dermatitis. J Clin Endocrinol Metab 2002; 87: 4245–4251.

32. Buske-Kirschbaum A, Ebrecht M, Hellhammer DH. Blunted HPA axis responsiveness to stress in atopic patients is associated with the acuity and severeness of allergic inflammation. Brain Behav Immun 2010; 24: 1347–1353.

33. Buske-Kirschbaum A, Jobst S, Hellhammer DH. Altered reactivity of the hypothalamus-pituitary-adrenal axis in patients with atopic dermatitis: pathologic factor or symptom? Ann N Y Acad Sci 1998; 840: 747–754.

34. Afsar FS, Isleten F, Sonmez N. Children with atopic dermatitis do not have more anxiety or different cortisol levels compared with normal children. J Cutan Med Surg 2010; 14: 13–18.

35. Kojima R, Matsuda A, Nomura I, Matsubara O, Nonoyama S, Ohya Y, et al. Salivary cortisol response to stress in young children with atopic dermatitis. Pediatr Dermatol 2013; 30: 17–22.

36. Haeck IM, Timmer-de Mik L, Lentjes EG, Buskens E, Hijnen DJ, Guikers C, et al. Low basal serum cortisol in patients with severe atopic dermatitis: potent topical corticosteroids wrongfully accused. Br J Dermatol 2007; 156: 979–985.

37. Harbuz MS, Stephanou A, Knight RA, Chover-Gonzalez AJ, Lightman SL. Action of interleukin-2 and interleukin-4 on CRF mRNA in the hypothalamus and POMC mRNA in the anterior pituitary. Brain Behav Immun 1992; 6: 214–222.

38. Suárez AL, Feramisco JD, Koo J, Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol 2012; 92: 7–15.

39. Garg A, Chren MM, Sands LP, Matsui MS, Marenus KD, Feingold KR, et al. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. Arch Dermatol 2001; 137: 53–59.

40. Choi EH, Brown BE, Crumrine D, Chang S, Man MQ, Elias PM, et al. Mechanisms by which psychologic stress alters cutaneous permeability barrier homeostasis and stratum corneum integrity. J Invest Dermatol 2005; 124: 587–595.

41. Choi EH, Demerjian M, Crumrine D, Brown BE, Mauro T, Elias PM, et al. Glucocorticoid blockade reverses psychological stress-induced abnormalities in epidermal structure and function. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1657–1662.

42. Aberg KM, Radek KA, Choi EH, Kim DK, Demerjian M, Hupe M, et al. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J Clin Invest 2007; 117: 3339–3349.

43. Lee HJ, Kwon YS, Park CO, Oh SH, Lee JH, Wu WH, et al. Corticotropin-releasing factor decreases IL-18 in the monocyte-derived dendritic cell. Exp Dermatol 2009; 18: 199–204.

44. Bischoff SC, Sellge G, Manns MP, Lorentz A. Interleukin-4 induces a switch of human intestinal mast cells from proinflammatory cells to Th2-type cells. Int Arch Allergy Immunol 2001; 124: 151–154.

45. Harvima IT, Nilsson G, Naukkarinen A. Role of mast cells and sensory nerves in skin inflammation. G Ital Dermatol Venereol 2010; 145: 195–204.

46. Peters EM, Kuhlmei A, Tobin DJ, Müller-Röver S, Klapp BF, Arck PC. Stress exposure modulates peptidergic innervation and degranulates mast cells in murine skin. Brain Behav Immun 2005; 19: 252–262.

47. Arck P, Paus R. From the brain-skin connection: the neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulation 2006; 13: 347–356.

48. Lonne-Rahm SB, Rickberg H, El-Nour H, Marin P, Azmitia EC, Nordlind K. Neuroimmune mechanisms in patients with atopic dermatitis during chronic stress. J Eur Acad Dermatol Venereol 2008; 22: 11–18.

49. Singh LK, Pang X, Alexacos N, Letourneau R, Theoharides TC. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: A link to neurogenic skin disorders. Brain Behav Immun 1999; 13: 225–239.

50. Shimoda T, Liang Z, Suzuki H, Kawana S. Inhibitory effects of antipsychotic and anxiolytic agents on stress-induced degranulation of mouse dermal mast cells. Clin Exp Dermatol 2010; 35: 531–536.

51. Oh SH, Bae BG, Park CO, Noh JY, Park IH, Wu WH, et al. Association of stress with symptoms of atopic dermatitis. Acta Derm Venereol 2010; 90: 582–588.

52. Amano H, Negishi I, Akiyama H, Ishikawa O. Psychological stress can trigger atopic dermatitis in NC/Nga mice: an inhibitory effect of corticotropin-releasing factor. Neuropsychopharmacology 2008; 33: 566–573.

100. Ito N, Sugawara K, Bodó E, Takigawa M, van Beek N, Ito T, et al. Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol 2010; 130: 995–1004.

101. Wang L, Million M, Rivier J, Rivier C, Craft N, Stenzel-Poore MP, et al. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice. PLoS One 2011; 16: e16377.

102. Arbiser JL, Karalis K, Viswanathan A, Koike C, Anand-Apte B, Flynn E, et al. Corticotropin-releasing hormone stimulates angiogenesis and epithelial tumor growth in the skin. J Invest Dermatol 1999; 113: 838–842.

103. Yang Y, Park H, Yang Y, Kim TS, Bang SI, Cho D. Enhancement of cell migration by corticotropin-releasing hormone through ERK1/2 pathway in murine melanoma cell line, B16F10. Exp Dermatol 2007; 16: 22–27.

104. Yang EV, Bane CM, MacCallum RC, Kiecolt-Glaser JK, Malarkey WB, Glaser R. Stress-related modulation of matrix metalloproteinase expression. J Neuroimmunol 2002; 133: 144–150.

105. Kim MH, Cho D, Kim HJ, Chong SJ, Lee KH, Yu DS, et al. Investigation of the corticotropin-releasing hormone-proopiomelanocortin axis in various skin tumours. Br J Dermatol 2006; 155: 910–915.

106. Zouboulis CC, Seltmann H, Hiroi N, Chen W, Young M, Oeff M, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A 2002; 99: 7148–7153.

107. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol 2009; 160: 345–352.

108. Ganceviciene R, Böhm M, Fimmel S, Zouboulis CC. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol 2009; 1: 170–176.

109. Isard O, Knol AC, Castex-Rizzi N, Khammari A, Charveron M, Dréno B. Cutaneous induction of corticotropin releasing hormone by Propionibacterium acnes extracts. Dermatoendocrinol 2009; 1: 96–99.

110. Kaneko K, Kawana S, Arai K, Shibasaki T. Corticotropin-releasing factor receptor type 1 is involved in the stress-induced exacerbation of chronic contact dermatitis in rats. Exp Dermatol 2003; 12: 47–52.

111. Kleyn CE, Schneider L, Saraceno R, Mantovani C, Richards HL, Fortune DG, et al. The effects of acute social stress on epidermal Langerhans’ cell frequency and expression of cutaneous neuropeptides. J Invest Dermatol 2008; 128: 1273–1279.

112. Hoetzenecker W, Meingassner JG, Ecker R, Stingl G, Stuetz A, Elbe-Bürger A. Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. J Invest Dermatol 2004; 122: 673–684.

113. Hall JM, Cruser D, Podawiltz A, Mummert DI, Jones H, Mummert ME. Psychological stress and the cutaneous immune response: roles of the HPA axis and the sympa­thetic nervous system in atopic dermatitis and psoriasis. Dermatol Res Pract 2012; 2012: 403908.

114. Nakano Y. Effect of chronic topical exposure to low-dose noxious chemicals and stress on skin sensitivity in mice. J Occup Health 2007; 49: 431–442.

115. Papadopoulou N, Kalogeromitros D, Staurianeas NG, Tiblalexi D, Theoharides TC. Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria. J Invest Dermatol 2005; 125: 952–955.

116. Crompton R, Clifton VL, Bisits AT, Read MA, Smith R, Wright IM. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab 2003; 88: 5427–5432.

117. Paus R, Theoharides TC, Arck PC. Neuroimmunoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol 2006; 27: 32–39.

 

Related articles

There are no related articles.


Share with your friends





Actions


Abstract

Full text

PDF

Supplementary


There is no supplementary for this article.

Print information


Volume 93, Issue 4

DOI: 10.2340/00015555-1557

Pages: 387-393

View at PubMed