The generator matrix
1 0 0 0 0 1 1 1 0 1 1 X 1 0 1 0 X 0 X 1 1 1 1 1 0 1 1 0 0 1 1 1 X 1 1 X 0 X 1 X 1 1
0 1 0 0 0 0 0 0 0 1 1 1 1 1 X+1 X 1 1 1 X+1 X 0 X X+1 0 0 X 1 X X+1 X X+1 0 X+1 X 1 1 0 X+1 1 X 0
0 0 1 0 0 0 1 1 1 1 X+1 0 0 X+1 X X X 0 1 X 1 1 0 1 1 X+1 X X+1 1 X+1 1 0 0 0 0 X X 1 X 1 1 0
0 0 0 1 0 1 1 0 1 X X+1 1 0 1 1 1 0 X+1 1 X X 1 1 X 1 1 X X X X 0 X 1 X+1 0 0 1 0 X X+1 1 0
0 0 0 0 1 1 0 1 X+1 X X+1 X+1 1 X 0 X+1 X+1 X 1 0 0 1 0 1 X X 0 0 0 1 X 1 X+1 1 0 0 1 X+1 X 1 1 0
0 0 0 0 0 X 0 0 X 0 X X X X 0 0 0 X 0 0 X 0 0 X 0 X X 0 X X 0 0 0 0 X X 0 0 X X X 0
0 0 0 0 0 0 X 0 0 0 0 0 X 0 0 X X X X X 0 0 X 0 0 X X X 0 X 0 0 X X 0 0 X 0 0 0 X X
0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X 0 X 0 X 0 X X 0 X
generates a code of length 42 over Z2[X]/(X^2) who´s minimum homogenous weight is 32.
Homogenous weight enumerator: w(x)=1x^0+74x^32+114x^33+200x^34+276x^35+400x^36+436x^37+480x^38+556x^39+623x^40+618x^41+552x^42+682x^43+641x^44+638x^45+486x^46+442x^47+347x^48+220x^49+182x^50+90x^51+85x^52+22x^53+18x^54+2x^55+3x^56+2x^58+1x^60+1x^68
The gray image is a linear code over GF(2) with n=84, k=13 and d=32.
This code was found by Heurico 1.16 in 5.02 seconds.